LeetCode 4. 寻找两个正序数组的中位数 (找第k个数的变种)

4. 寻找两个正序数组的中位数

题目:

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

 

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

 

思路:有序数组,如果总长度为奇数,则找到(length+1)/2个数,如果为偶数,则找到length/2,length/2+1两个数。

对于找到第k个数,首先判断边界条件,num1到头或者num2到头或者k==1,然后正常情况,这中间要记得k是第几个数,所以取值时记得-1.

class Solution {
public:
    int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        int m = nums1.size();
        int n = nums2.size();
        int index1 = 0, index2 = 0;

        while (true) {
            // 边界情况
            if (index1 == m) {
                return nums2[index2 + k - 1];
            }
            if (index2 == n) {
                return nums1[index1 + k - 1];
            }
            if (k == 1) {
                return min(nums1[index1], nums2[index2]);
            }

            // 正常情况
            int newIndex1 = min(index1 + k / 2 - 1, m - 1);
            int newIndex2 = min(index2 + k / 2 - 1, n - 1);
            int pivot1 = nums1[newIndex1];
            int pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2) {
                k -= newIndex1 - index1 + 1;
                index1 = newIndex1 + 1;
            }
            else {
                k -= newIndex2 - index2 + 1;
                index2 = newIndex2 + 1;
            }
        }
    }

    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int totalLength = nums1.size() + nums2.size();
        if (totalLength % 2 == 1) {
            return getKthElement(nums1, nums2, (totalLength + 1) / 2);
        }
        else {
            return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
        }
    }
};

 

posted @ 2020-06-23 13:24  鸭子船长  阅读(296)  评论(0编辑  收藏  举报