TensorFlow 辨异 —— tf.placeholder 与 tf.Variable

https://blog.csdn.net/lanchunhui/article/details/61712830

https://www.cnblogs.com/silence-tommy/p/7029561.html

二者的主要区别在于:

  • tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias);

    • 声明时,必须提供初始值;
    • 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初始值; 
      weights = tf.Variable(
          tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                  stddev=1./math.sqrt(float(IMAGE_PIXELS)), name='weights')
      )
      biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
      • 1
      • 2
      • 3
      • 4
      • 5
  • tf.placeholder:用于得到传递进来的真实的训练样本:

    • 不必指定初始值,可在运行时,通过 Session.run 的函数的 feed_dict 参数指定;
    • 这也是其命名的原因所在,仅仅作为一种占位符;
    images_placeholder = tf.placeholder(tf.float32, shape=[batch_size, IMAGE_PIXELS])
    labels_placeholder = tf.placeholder(tf.int32, shape=[batch_size])
    • 1
    • 2

如下则是二者真实的使用场景:

for step in range(FLAGS.max_steps):
    feed_dict = {
        images_placeholder = images_feed,
        labels_placeholder = labels_feed
    }
    _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

当执行这些操作时,tf.Variable 的值将会改变,也即被修改,这也是其名称的来源(variable,变量)。

What’s the difference between tf.placeholder and tf.Variable

posted @   _海阔天空  阅读(1075)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2015-09-11 javascript “||”、“&&”的灵活运用
2015-09-11 knockoutjs + easyui.treegrid 可编辑的自定义绑定插件
2015-09-11 jQuery EasyUI datagrid实现本地分页的方法
2015-09-11 Knockout Grid - Loading Remote Data
2015-09-11 【ASP.NET Web API教程】6.1 媒体格式化器
2015-09-11 Entity Framework 学习总结之一:ADO.NET 实体框架概述
2015-09-11 ASP.NET MVC4中调用WEB API的四个方法
点击右上角即可分享
微信分享提示