[luogu P4240] 毒瘤之神的考验
\(\text{Problem}:\)毒瘤之神的考验
\(\text{Solution}:\)
首先大力推导式子:
\[\begin{aligned}
&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\varphi(ij)\\
&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))}\\
&=\sum\limits_{d=1}^{\min(n,m)}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\varphi(i)\varphi(j)[\gcd(i,j)=d]\\
&=\sum\limits_{d=1}^{\min(n,m)}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\varphi(id)\varphi(jd)[\gcd(i,j)=1]\\
&=\sum\limits_{d=1}^{\min(n,m)}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\varphi(id)\varphi(jd)\sum\limits_{k\mid \gcd(i,j)}\mu(k)\\
&=\sum\limits_{d=1}^{\min(n,m)}\frac{d}{\varphi(d)}\sum\limits_{k=1}^{\lfloor\frac{\min(n,m)}{d}\rfloor}\mu(k)\sum\limits_{i=1}^{\lfloor\frac{n}{dk}\rfloor}\varphi(idk)\sum\limits_{j=1}^{\lfloor\frac{m}{dk}\rfloor}\varphi(jdk)\\
&=\sum\limits_{T=1}^{\min(n,m)}\sum\limits_{d\mid T}\frac{d\cdot\mu(\frac{T}{d})}{\varphi(d)}\sum\limits_{i=1}^{\lfloor\frac{n}{T}\rfloor}\varphi(iT)\sum\limits_{j=1}^{\lfloor\frac{m}{T}\rfloor}\varphi(jT)
\end{aligned}
\]
记 \(f(n)=\sum\limits_{d\mid n}\frac{d\cdot\mu(\frac{n}{d})}{\varphi(d)}\),\(g(n,k)=\sum\limits_{i=1}^{n}\varphi(ik)\),有:
\[\sum\limits_{T=1}^{\min(n,m)}f(T)g(\lfloor\frac{n}{T}\rfloor,T)g(\lfloor\frac{m}{T}\rfloor,T)
\]
在 \(O(n\ln n)\) 的时间复杂度内预处理 \(f\) 和 \(g\),可以得到 \(50\) 分。
设 \(h(x,y,n)=\sum\limits_{k=1}^{n}f(k)g(x,k)g(y,k)\),那么对原式进行整除分块,有(\(l,r\) 表示当前区间):
\[\sum\limits_{l,r}h(\lfloor\frac{n}{l}\rfloor,\lfloor\frac{m}{l}\rfloor,r)-h(\lfloor\frac{n}{l}\rfloor,\lfloor\frac{m}{l}\rfloor,l-1)
\]
显然不能直接预处理 \(h\),但是我们考虑根号分治。设阈值 \(S\),预处理出所有 \(x,y\leq S\) 的 \(h(x,y,n)\),对于剩下的情况暴力计算,可以通过本题。
\(\text{Code}:\)
#include <bits/stdc++.h>
#pragma GCC optimize(3)
//#define int long long
#define ri register
#define mk make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define is insert
#define es erase
#define vi vector<int>
#define vpi vector<pair<int,int>>
using namespace std; const int M=100010, N=100000, S=50, Mod=998244353;
inline int read()
{
int s=0, w=1; ri char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=(s<<3)+(s<<1)+(ch^48), ch=getchar();
return s*w;
}
int pri[M],cnt,mu[M],phi[M],iiv[M]; bool book[M];
int f[M]; vector<int> g[M]; vector<int> h[S+1][S+1];
inline void Init()
{
iiv[1]=1;
for(ri int i=2;i<=N;i++) iiv[i]=1ll*(Mod-Mod/i)*iiv[Mod%i]%Mod;
mu[1]=phi[1]=1;
for(ri int i=2;i<=N;i++)
{
if(!book[i]) pri[++cnt]=i, mu[i]=-1, phi[i]=i-1;
for(ri int j=1;j<=cnt&&i*pri[j]<=N;j++)
{
book[i*pri[j]]=1;
if(i%pri[j]) mu[i*pri[j]]=-mu[i], phi[i*pri[j]]=phi[i]*(pri[j]-1);
else { phi[i*pri[j]]=phi[i]*pri[j]; break; }
}
}
for(ri int i=1;i<=N;i++)
{
int w=1ll*i*iiv[phi[i]]%Mod;
for(ri int j=i;j<=N;j+=i)
{
if(!mu[j/i]) continue;
if(~mu[j/i]) f[j]=(f[j]+w)%Mod;
else f[j]=(f[j]-w+Mod)%Mod;
}
}
for(ri int i=1;i<=N;i++)
{
g[i].eb(0);
for(ri int j=1,lst=0;j<=N/i;j++)
{
(lst+=phi[i*j])%=Mod;
g[i].eb(lst);
}
}
for(ri int i=1;i<=S;i++)
{
for(ri int j=1;j<=S;j++)
{
h[i][j].eb(0);
for(ri int k=1,lst=0;i*k<=N && j*k<=N;k++)
{
lst=(lst+1ll*f[k]*g[k][i]%Mod*g[k][j]%Mod)%Mod;
h[i][j].eb(lst);
}
}
}
}
signed main()
{
Init();
for(ri int T=read();T;T--)
{
int n,m;
n=read(), m=read();
if(n>m) swap(n,m);
int up=m/S;
int ans=0;
for(ri int i=1;i<=up;i++) ans=(ans+1ll*f[i]*g[i][n/i]%Mod*g[i][m/i]%Mod)%Mod;
for(ri int l=up+1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=(ans+h[n/l][m/l][r]-h[n/l][m/l][l-1])%Mod;
}
printf("%d\n",(ans+Mod)%Mod);
}
return 0;
}
夜畔流离回,暗叹永无殿。
独隐万花翠,空寂亦难迁。
千秋孰能为,明灭常久见。
但得心未碎,踏遍九重天。