[luogu P4389] 付公主的背包
\(\text{Problem}:\)付公主的背包
\(\text{Solution}:\)
考虑一个物品的生成函数 \(f_{i}(x)\) 为:
\[f_{i}(x)=\sum\limits_{j=0}^{\infty}x^{v_{i}\cdot j}=\cfrac{1}{1-x^{v_{i}}}
\]
对 \(f_{i}(x)\) 取 \(\ln\)。套路的(具体证明可参考十二重计数法 第十重),有:
\[\ln f_{i}(x)=\sum\limits_{j=1}^{\infty}\cfrac{x^{v_{i}\cdot j}}{j}
\]
那么答案的生成函数 \(g(x)\) 为:
\[g(x)=\prod\limits_{i=1}^{n}f_{i}(x)
\]
两边取 \(\ln\),有:
\[\ln g(x)=\sum\limits_{i=1}^{n}\ln f_{i}(x)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{\infty}\cfrac{x^{v_{i}\cdot j}}{j}
\]
和拆分数不同的是,背包问题直接做,当 \(v_{i}=1\) 时复杂度会退化到 \(O(n^{2})\)。发现上面式子都是和式,对 \(v_{i}\) 开个桶即可。最后利用多项式 \(\exp\) 即可得解,时间复杂度 \(O(n\log n)\)。
\(\text{Code}:\)
#include <bits/stdc++.h>
//#pragma GCC optimize(3)
//#define int long long
#define ri register
#define mk make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define is insert
#define es erase
#define vi vector<int>
#define vpi vector<pair<int,int>>
using namespace std; const int N=265010, Mod=998244353;
inline int read()
{
int s=0, w=1; ri char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=(s<<3)+(s<<1)+(ch^48), ch=getchar();
return s*w;
}
int n,m,v[N];
int rev[N],r[24][2],iiv[N+5];
inline int ksc(int x,int p) { int res=1; for(;p;p>>=1, x=1ll*x*x%Mod) if(p&1) res=1ll*res*x%Mod; return res; }
inline void Get_Rev(int T) { for(ri int i=0;i<T;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(T>>1):0); }
inline void DFT(int T,vector<int> &s,int type)
{
for(ri int i=0;i<T;i++) if(rev[i]<i) swap(s[i],s[rev[i]]);
for(ri int i=2,cnt=1;i<=T;i<<=1,cnt++)
{
int wn=r[cnt][type];
for(ri int j=0,mid=(i>>1);j<T;j+=i)
{
for(ri int k=0,w=1;k<mid;k++,w=1ll*w*wn%Mod)
{
int x=s[j+k], y=1ll*w*s[j+mid+k]%Mod;
s[j+k]=(x+y)%Mod;
s[j+mid+k]=x-y;
if(s[j+mid+k]<0) s[j+mid+k]+=Mod;
}
}
}
if(!type) for(ri int i=0,inv=ksc(T,Mod-2);i<T;i++) s[i]=1ll*s[i]*inv%Mod;
}
inline void NTT(int n,int m,vector<int> &A,vector<int> B)
{
int len=n+m;
int T=1;
while(T<=len) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=n+1;i<T;i++) A[i]=0;
for(ri int i=m+1;i<T;i++) B[i]=0;
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=1ll*A[i]*B[i]%Mod;
DFT(T,A,0);
}
void GetInv(int n,vector<int> &F,vector<int> G)
{
if(n==1) { F[0]=ksc(G[0],Mod-2); return; }
GetInv((n+1)/2,F,G);
vector<int> A,B;
int T=1;
while(T<=n+n) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=0;i<n;i++) A[i]=F[i], B[i]=G[i];
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=(2ll*A[i]%Mod-1ll*B[i]*A[i]%Mod*A[i]%Mod+Mod)%Mod;
DFT(T,A,0);
for(ri int i=0;i<n;i++) F[i]=A[i];
}
inline void GetDao(int n,vector<int> &A,vector<int> B)
{
for(ri int i=0;i<n-1;i++) A[i]=1ll*(i+1)*B[i+1]%Mod;
A[n-1]=0;
}
inline void GetJi(int n,vector<int> &A,vector<int> B)
{
for(ri int i=1;i<n;i++) A[i]=1ll*B[i-1]*iiv[i]%Mod;
A[0]=0;
}
inline void GetLn(int n,vector<int> &F,vector<int> G)
{
vector<int> A,B;
A.resize(n), B.resize(n);
GetDao(n,A,G);
GetInv(n,B,G);
NTT(n,n,A,B);
GetJi(n,F,A);
}
void GetExp(int n,vector<int> &F,vector<int> G)
{
if(n==1) { F[0]=1; return; }
GetExp((n+1)/2,F,G);
vector<int> C;
C.resize(n);
GetLn(n,C,F);
vector<int> A,B;
int T=1;
while(T<=n+n) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=0;i<n;i++) A[i]=F[i], B[i]=(G[i]-C[i]+Mod)%Mod; B[0]++, B[0]%=Mod;
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=1ll*A[i]*B[i]%Mod;
DFT(T,A,0);
for(ri int i=0;i<n;i++) F[i]=A[i];
}
vector<int> Ans;
signed main()
{
r[23][1]=ksc(3,119), r[23][0]=ksc(ksc(3,Mod-2),119);
for(ri int i=22;~i;i--) r[i][0]=1ll*r[i+1][0]*r[i+1][0]%Mod, r[i][1]=1ll*r[i+1][1]*r[i+1][1]%Mod;
iiv[1]=1;
for(ri int i=2;i<=N;i++) iiv[i]=1ll*(Mod-Mod/i)*iiv[Mod%i]%Mod;
n=read(), m=read();
for(ri int i=1;i<=n;i++)
{
int x=read();
v[x]++;
}
Ans.resize(m+1);
for(ri int i=1;i<=m;i++)
{
for(ri int j=1;i*j<=m;j++)
{
Ans[i*j]=(Ans[i*j]+1ll*iiv[j]*v[i]%Mod)%Mod;
}
}
GetExp(m+1,Ans,Ans);
for(ri int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}
夜畔流离回,暗叹永无殿。
独隐万花翠,空寂亦难迁。
千秋孰能为,明灭常久见。
但得心未碎,踏遍九重天。