多项式 Ln/Exp
\(\text{Problem}:\)【模板】多项式对数函数(多项式 ln)
\(\text{Solution}:\)
引理 \(1\):
在模意义下当且仅当 \([x^{0}]f(x)=1\) 时,\(f(x)\) 有对数多项式。
设 \(C(x)=\ln(x)\),有:
\[B(x)\equiv C(A(x))\pmod {x^{n}}
\]
对两边求导,得到:
\[\begin{aligned}
B'(x)&\equiv C'(A(x))A'(x)\pmod {x^{n}}\\
B'(x)&\equiv \cfrac{A'(x)}{A(x)}\pmod {x^{n}}
\end{aligned}
\]
对 \(A\) 求导及求逆后求出 \(B'\),对它求积分就可以得到 \(B\) 了。
\[\begin{aligned}
(x^{a})'&=ax^{a-1}\\
\int x^{a}dx&=\cfrac{x^{a+1}}{a+1}
\end{aligned}
\]
\(\text{Code}:\)
#include <bits/stdc++.h>
#pragma GCC optimize(3)
//#define int long long
#define ri register
#define mk make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define is insert
#define es erase
#define vi vector<int>
#define vpi vector<pair<int,int>>
using namespace std; const int N=265010, Mod=998244353;
inline int read()
{
int s=0, w=1; ri char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=(s<<3)+(s<<1)+(ch^48), ch=getchar();
return s*w;
}
int n;
int rev[N],r[24][2];
vector<int> a,F;
inline int ksc(int x,int p) { int res=1; for(;p;p>>=1, x=1ll*x*x%Mod) if(p&1) res=1ll*res*x%Mod; return res; }
inline void Get_Rev(int T) { for(ri int i=0;i<T;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(T>>1):0); }
inline void DFT(int T,vector<int> &s,int type)
{
for(ri int i=0;i<T;i++) if(rev[i]<i) swap(s[i],s[rev[i]]);
for(ri int i=2,cnt=1;i<=T;i<<=1,cnt++)
{
int wn=r[cnt][type];
for(ri int j=0,mid=(i>>1);j<T;j+=i)
{
for(ri int k=0,w=1;k<mid;k++,w=1ll*w*wn%Mod)
{
int x=s[j+k], y=1ll*w*s[j+mid+k]%Mod;
s[j+k]=(x+y)%Mod;
s[j+mid+k]=x-y;
if(s[j+mid+k]<0) s[j+mid+k]+=Mod;
}
}
}
if(!type) for(ri int i=0,inv=ksc(T,Mod-2);i<T;i++) s[i]=1ll*s[i]*inv%Mod;
}
inline void NTT(int n,int m,vector<int> &A,vector<int> &B)
{
int len=n+m;
int T=1;
while(T<=len) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=n+1;i<T;i++) A[i]=0;
for(ri int i=m+1;i<T;i++) B[i]=0;
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=1ll*A[i]*B[i]%Mod;
DFT(T,A,0);
}
inline void GetDao(int n,vector<int> &A,vector<int> &B)
{
for(ri int i=0;i<n-1;i++) A[i]=1ll*B[i+1]*(i+1)%Mod;
A[n-1]=0;
}
inline void GetJi(int n,vector<int> &A,vector<int> &B)
{
for(ri int i=1;i<n;i++) A[i]=1ll*B[i-1]*ksc(i,Mod-2)%Mod;
A[0]=0;
}
inline void GetInv(int n,vector<int> &F,vector<int> &G)
{
if(n==1) { F[0]=ksc(G[0],Mod-2); return; }
GetInv((n+1)/2,F,G);
vector<int> A,B;
int T=1;
while(T<=n+n) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=0;i<n;i++) A[i]=F[i], B[i]=G[i];
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=(2ll*A[i]-1ll*B[i]*A[i]%Mod*A[i]%Mod+Mod)%Mod;
DFT(T,A,0);
for(ri int i=0;i<n;i++) F[i]=A[i];
}
inline void GetLn(int n,vector<int> &F)
{
vector<int> A,B;
A.resize(n), B.resize(n);
GetDao(n,A,a);
GetInv(n,B,a);
NTT(n,n,A,B);
GetJi(n,F,A);
}
signed main()
{
r[23][1]=ksc(3,119), r[23][0]=ksc(ksc(3,Mod-2),119);
for(ri int i=22;~i;i--) r[i][0]=1ll*r[i+1][0]*r[i+1][0]%Mod, r[i][1]=1ll*r[i+1][1]*r[i+1][1]%Mod;
n=read();
a.resize(n), F.resize(n);
for(ri int i=0;i<n;i++) a[i]=read();
GetLn(n,F);
for(ri int i=0;i<n;i++) printf("%d ",F[i]);
puts("");
return 0;
}
\(\text{Problem}:\)【模板】多项式指数函数(多项式 exp)
\(\text{Solution}:\)
多项式牛顿迭代:
给定多项式 \(F(x)\),求多项式 \(G(x)\) 满足:
\[F(G(x))\equiv 0\pmod {x^{n}}
\]
考虑倍增求解。设 \(G_{0}(x)\) 表示模 \(\left\lceil \dfrac{n}{2}\right\rceil\) 意义下的解,将 \(F(G(x))\) 在 \(G_{0}(x)\) 处进行泰勒展开,有:
\[F(G(x))=\sum\limits_{i=0}^{\infty}\cfrac{F^{(i)}(G_{0}(x))}{i!}(G(x)-G_{0}(x))^{i}\equiv 0\pmod {x^{n}}
\]
易知 \(G(x)-G_{0}(x)\) 的最低非零项次数为 \(\left\lceil \dfrac{n}{2}\right\rceil\),故 \(\forall i\geq 2\),都有:
\[(G(x)-G_{0}(x))^{i}\equiv 0\pmod {x^{n}}
\]
故对于泰勒展开,只需取前两项,得到:
\[\begin{aligned}
F(G(x))&\equiv F(G_{0}(x))+F'(G_{0}(x))(G(x)-G_{0}(x))\\
&\equiv0\pmod {x^{n}}\\
G(x)&\equiv G_{0}(x)-\cfrac{F(G_{0}(x))}{F'(G_{0}(x))}\pmod {x^{n}}
\end{aligned}
\]
对 \(n=1\) 的情况单独求解,即可倍增求出 \(G(x)\)。
回到本题,对同余式两边 \(\ln\),有:
\[\begin{aligned}
F(B(x))&\equiv\ln B(x)-A(x)\pmod {x^{n}}\\
F'(B(x))&\equiv\cfrac{1}{B(x)}\pmod {x^{n}}
\end{aligned}
\]
将其带回牛顿迭代的式子,有:
\[\begin{aligned}
B(x)&\equiv B_{0}(x)-B_{0}(x)(\ln B_{0}(x)-A(x))\pmod {x^{n}}\\
&\equiv B_{0}(x)(1+A(x)-\ln B_{0}(x))\pmod {x^{n}}
\end{aligned}
\]
总时间复杂度 \(O(n\log n)\)。
\(\text{Code}:\)
#include <bits/stdc++.h>
#pragma GCC optimize(3)
//#define int long long
#define ri register
#define mk make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define is insert
#define es erase
#define vi vector<int>
#define vpi vector<pair<int,int>>
using namespace std; const int N=265010, Mod=998244353;
inline int read()
{
int s=0, w=1; ri char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=(s<<3)+(s<<1)+(ch^48), ch=getchar();
return s*w;
}
int n;
int rev[N],r[24][2],iiv[N+5];
vector<int> a,F;
inline int ksc(int x,int p) { int res=1; for(;p;p>>=1, x=1ll*x*x%Mod) if(p&1) res=1ll*res*x%Mod; return res; }
inline void Get_Rev(int T) { for(ri int i=0;i<T;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(T>>1):0); }
inline void DFT(int T,vector<int> &s,int type)
{
for(ri int i=0;i<T;i++) if(rev[i]<i) swap(s[i],s[rev[i]]);
for(ri int i=2,cnt=1;i<=T;i<<=1,cnt++)
{
int wn=r[cnt][type];
for(ri int j=0,mid=(i>>1);j<T;j+=i)
{
for(ri int k=0,w=1;k<mid;k++,w=1ll*w*wn%Mod)
{
int x=s[j+k], y=1ll*w*s[j+mid+k]%Mod;
s[j+k]=(x+y)%Mod;
s[j+mid+k]=x-y;
if(s[j+mid+k]<0) s[j+mid+k]+=Mod;
}
}
}
if(!type) for(ri int i=0,inv=ksc(T,Mod-2);i<T;i++) s[i]=1ll*s[i]*inv%Mod;
}
inline void NTT(int n,int m,vector<int> &A,vector<int> &B)
{
int len=n+m;
int T=1;
while(T<=len) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=n+1;i<T;i++) A[i]=0;
for(ri int i=m+1;i<T;i++) B[i]=0;
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=1ll*A[i]*B[i]%Mod;
DFT(T,A,0);
}
void GetInv(int n,vector<int> &F,vector<int> &G)
{
if(n==1) { F[0]=ksc(G[0],Mod-2); return; }
GetInv((n+1)/2,F,G);
vector<int> A,B;
int T=1;
while(T<=n+n) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=0;i<n;i++) A[i]=F[i], B[i]=G[i];
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=(2ll*A[i]%Mod-1ll*B[i]*A[i]%Mod*A[i]%Mod+Mod)%Mod;
DFT(T,A,0);
for(ri int i=0;i<n;i++) F[i]=A[i];
}
void GetDao(int n,vector<int> &A,vector<int> &B)
{
for(ri int i=0;i<n-1;i++) A[i]=1ll*(i+1)*B[i+1]%Mod;
A[n-1]=0;
}
void GetJi(int n,vector<int> &A,vector<int> &B)
{
for(ri int i=1;i<n;i++) A[i]=1ll*B[i-1]*iiv[i]%Mod;
A[0]=0;
}
void GetLn(int n,vector<int> &F,vector<int> &G)
{
vector<int> A,B;
A.resize(n), B.resize(n);
GetDao(n,A,G);
GetInv(n,B,G);
NTT(n,n,A,B);
GetJi(n,F,A);
}
void GetExp(int n,vector<int> &F)
{
if(n==1) { F[0]=1; return; }
GetExp((n+1)/2,F);
vector<int> G;
G.resize(n);
GetLn(n,G,F);
vector<int> A,B;
int T=1;
while(T<=n+n) T<<=1;
Get_Rev(T);
A.resize(T), B.resize(T);
for(ri int i=0;i<n;i++) A[i]=F[i], B[i]=(a[i]-G[i]+Mod)%Mod; B[0]++;
DFT(T,A,1), DFT(T,B,1);
for(ri int i=0;i<T;i++) A[i]=1ll*A[i]*B[i]%Mod;
DFT(T,A,0);
for(ri int i=0;i<n;i++) F[i]=A[i];
}
signed main()
{
iiv[1]=1;
for(ri int i=2;i<=N;i++) iiv[i]=1ll*(Mod-Mod/i)*iiv[Mod%i]%Mod;
r[23][1]=ksc(3,119), r[23][0]=ksc(ksc(3,Mod-2),119);
for(ri int i=22;~i;i--) r[i][0]=1ll*r[i+1][0]*r[i+1][0]%Mod, r[i][1]=1ll*r[i+1][1]*r[i+1][1]%Mod;
n=read();
a.resize(n), F.resize(n);
for(ri int i=0;i<n;i++) a[i]=read();
GetExp(n,F);
for(ri int i=0;i<n;i++) printf("%d ",F[i]);
puts("");
return 0;
}
夜畔流离回,暗叹永无殿。
独隐万花翠,空寂亦难迁。
千秋孰能为,明灭常久见。
但得心未碎,踏遍九重天。