排序算法
排序算法的介绍
- 排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。
- 排序的分类:
- 内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序。 - 外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。 - 常见的排序算法分类(见右图):
- 内部排序:
算法的时间复杂度
- 度量一个程序(算法)执行时间的两种方法
- 事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
- 事前估算的方法通过分析某个算法的时间复杂度来判断哪个算法更优.
时间频率
- 基本介绍
一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。[举例说明]
举例说明-基本案例
- 比如计算1-100所有数字之和, 我们设计两种算法!
//O(n)
int total = 0;
int end = 100;
for (int i = 1;i <= end;i ++){
total +=1;
}
T(n)=n+1;
//直接计算O(1)
total=(1+end)*end/2;
T(n)=1;
举例说明-忽略常数项
- 结论
- 2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
- 3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略
举例说明-忽略低此项
- 结论:
- 2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
- n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20
举例说明-忽略系数
- 结论
- 随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
- 而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键
时间复杂度
- 一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
- T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。
- 计算时间复杂度的方法:
用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
常见的时间复杂度
- 常数阶O(1)【一句话就搞定】
- 对数阶O(log2n)【log以2(底数)为底n(真数)的倍数】
- 线性阶O(n)【随着n的变大值也变大,线性】
- 线性对数阶O(nlog2n)
- 平方阶O(n^2)【双层for循环】
- 立方阶O(n^3)【三层for循环】
- k次方阶O(n^k)【嵌套了k次for循环】
- 指数阶O(2^n)【尽量避免】
- 说明
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n)<O(n!) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
从图中可见,我们应该尽可能避免使用指数阶的算法
1. 参数阶 O(1)
- 无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
- 上述代码在执行的时候,它消耗的时间并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。
2. 对数阶 O(log2n)
int i = 1;
while (i < n) {
i = i * 2;
}
- 说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .
举例:
如果 n等于1024 那么上面那个循环一共执行多少次?
一共执行以 log以2为底的1024次,对应的倍数,就是10。2^10=1024。
3. 线性阶 O(N)
for (i = 1; i <= n; ++i) {
j = i;
j++;
}
- 说明:这段代码,for循环里面的代码会执行 n遍,因此它消耗的时间随着n的变化而变化的,因此这类代码都可以用 O(n)来表示它的时间复杂度。
4. 线性对数阶 O(nlogN)
for (m = 1; m < n; m++) {
i = 1;
while (i < n) {
i = i * 2;
}
}
- 说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)
5. 平方阶O(n²)
for (x = 1; i <= n; x++) {
for (int i = 1; i <= n; i++) {
j = i;
j++;
}
}
- 说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)
6. 立方阶O(n³)、K次方阶O(n^k)
说明:参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似
参考 https://www.cnblogs.com/huangbw/p/7398418.html
https://zhuanlan.zhihu.com/p/121838438
https://www.cnblogs.com/xiongze520/p/15666448.html#_label1
平均时间复杂度和最坏时间复杂度
- 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
- 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
- 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)
算法的空间复杂度简介
- 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
- 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法,基数排序就属于这种情况
- 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.
算法的空间复杂度简介
- 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,他也是问题规模n的函数。
- 空间复杂度(space complexity)是对一个算法在运行过程中临时占用内存空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,列如快速排序和归并排序算法就属于这种情况。
- 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的是程序执行的速度。一些缓存产品(redis,memcache)和算法(基数排序)本质就是用空间换时间。
冒泡排序
-
冒泡排序(buble sorting)的基本意思是:通过对待排序序列从前向后(下标较小的元素开始),依此比较相邻元素的值,若发现逆序(在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序)则交换,使值较大的元素逐渐从前往后部,就像水底下的气泡一样逐渐向上冒。
-
因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志 flag判断元素是否进行过交换。从而减少不必要的比较。
冒泡排序应用实例
- 我们举一个具体的案例来说明冒泡法。我们将5个无序的数:3,9,-1,10,20
使用冒泡排序将其排成一个从小到大的有序数列。
第一趟排序
次数 | 结果 | 描述 |
---|---|---|
1 | 3,9,-1,10,20 | 3和9进行比较,3小于9所以不进行逆序交换位置(如果相邻的元素逆序就进行交换位置) |
2 | 3,-1,9,10,20 | 9和-1进行比较,9大于-1,逆序,交换位置 |
3 | 3,-1,9,10,20 | 9和10进行比较,9小于10,不进行交换位置 |
4 | 3,-1,9,10,20 | 10和20进行比较,10小于20,不进行交换位置。第一趟结束最终决定20为最大值 |
第二趟排序
次数 | 结果 | 描述 |
---|---|---|
1 | -1,3,9,10,20 | 3和-1进行比较,3大于-1,逆序,交换位置 |
2 | -1,3,9,10,20 | 3和9进行比较,小于不进行交换 |
3 | -1,3,9,10,20 | 9和10进行比较,仍然不进行交换。第二个最大的10确认下来 |
第三趟排序
次数 | 结果 | 描述 |
---|---|---|
1 | -1,3,9,10,20 | 1和3进行比较小于不进行交换位置 |
2 | -1,3,9,10,20 | 3和9进行比较小于不进行交换位置。9确定下来 |
第四趟排序
次数 | 结果 | 描述 |
---|---|---|
1 | -1,3,9,10,20 | 1和3进行比较小于不进行交换位置,最终确定下来结果 |
小结冒泡排序规则
- 一共进行数组的大小-1次大的循环。
- 每一趟排序的次数在逐渐的减少。
- 如果我们发现在某趟排序中,没有发生一次交换,可以提前结束冒泡排序。这个就是优化。
代码
import org.junit.Test;
import java.util.Arrays;
/**
* @author zhaokuii11@163.com
* @create 2021-12-18 17:10
* @Description
*/
public class BubbleSort {
static int arr[] = {3, 9, -1, 10, -2};
@Test
public void bubbleTest() {
//为了容易理解,我们把冒泡排序的演变过程,演变出来
//第一趟排序,就是将最大的数排在最后
int temp = 0;//临时变量,用于最大最小交换
for (int i = 0; i < arr.length - 1 - 0; i++) {
//如果前面的数比后面的数大,则交换
if (arr[i] > arr[i + 1]) {
temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
//第一趟排序后的数组 [3, -1, 9, -2, 10]
System.out.println(Arrays.toString(arr));
//第二趟排序,就是将第二大的数排在倒数第二位
// 【刚才排好的最大的数不在比叫所以在减一】
for (int i = 0; i < arr.length - 1 - 1; i++) {
//如果前面的数比后面的数大,则交换
if (arr[i] > arr[i + 1]) {
temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
//第二趟排序后的数组 [-1, 3, -2, 9, 10]
System.out.println(Arrays.toString(arr));
//第三趟排序,就是将第三大的数排在倒数第三位
for (int i = 0; i < arr.length - 1 - 2; i++) {
//如果前面的数比后面的数大,则交换
if (arr[i] > arr[i + 1]) {
temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
//第三趟排序后的数组 [-1, -2, 3, 9, 10]
System.out.println(Arrays.toString(arr));
//第四趟排序,就是将第四大的数排在倒数第四位
for (int i = 0; i < arr.length - 1 - 3; i++) {
//如果前面的数比后面的数大,则交换
if (arr[i] > arr[i + 1]) {
temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
//第四趟排序后的数组 [-2, -1, 3, 9, 10]
System.out.println(Arrays.toString(arr));
}
@Test
public void bubbleAdvancedTest() {
//优化 冒泡排序的时间复杂度 O(n^2)
for (int i = 0; i < arr.length - 1; i++) {
int temp = 0;//临时变量,用于最大最小交换
for (int j = 0; j < arr.length - 1 - i; j++) {
//如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
//[-2, -1, 3, 9, 10]
System.out.println(Arrays.toString(arr));
}
@Test
public void bubbleFinalTest() {
//优化 如果在某趟中发现没有一次交换,则提前结束冒泡排序
for (int i = 0; i < arr.length - 1; i++) {
boolean flag = false;//标识变量,表示是否进行过交换
int temp = 0;//临时变量,用于最大最小交换
for (int j = 0; j < arr.length - 1 - i; j++) {
//如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
if (!flag) {
//在一趟排序中,一次交换都没有发生过,则退出
//注意:如果 flag在双层 for循环外边记得进行重置为 false!!!
break;
}
}
System.out.println(Arrays.toString(arr));
}
//将冒泡排序算法,封装成一个方法
public int[] bubbleSort(int[] arr) {
//优化 如果在某趟中发现没有一次交换,则提前结束冒泡排序
for (int i = 0; i < arr.length - 1; i++) {
boolean flag = false;//标识变量,表示是否进行过交换
int temp = 0;//临时变量,用于最大最小交换
for (int j = 0; j < arr.length - 1 - i; j++) {
//如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
if (!flag) {
//在一趟排序中,一次交换都没有发生过,则退出
//注意:如果 flag在双层 for循环外边记得进行重置为 false!!!
break;
}
}
return arr;
}
}