Stream 流
Stream流(接口不是函数接口)
描述
- 在java.1.8中,由于 lambda表达式这种函数编程jdk引入了一个全新的改变
Stream流
它是用来解决已有集合类库的一些弊端的。 Stream
是java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找,过滤和映射数据等操,这一套步骤我们称之为一种处理方案,而方案就是一种'函数模型'.方案中的操作的每一个步骤,我们称之为一个"流",调用指定的api方法,从一个流中转换为另一个流,都有对应的api方法fiter,map,skip,count
都是对函数模型进行操作。使用Stream API集合数据进行操作,就类似于使用SQL执行的数据库查询()- 当我们需要对集合当中的元素进行操作的时候,总是需要对集合循环遍历,再次循环。。。一定要这样做吗?不一定,他只是用来找到你需要元素的一种方式,并不是目的。目的就是想要取出想要的元素并且循环打印展示出来。以往的方式就是每次循环都需要从头开始遍历,下一次循环还是从头开始。
- Java 1.8可以使用lambda表达式衍生出来
Stream和Collection集合的区别:
- 中间操作都会返回流对象本身,这样多个操作可以串联成一个管道,如同流式风格,对中间操作进行优化,如果可以延迟执行和短路。(
管道执行
) - 内部迭代:以前队列集合遍历都是迭代器iterator后者foreach循环,显示的在集合外部进行迭代。这叫做外部迭代。stream流提供了内部迭代的方法,这个流可以直接调用遍历的方法。
- Stream流其实是一个集合元素的函数模型,他并不是集合,也不是数据结构。其本身并不存储任何元素(地址).
- Collection是一种静态的内存数据结构,而Stream是有关计算的。
前者是主要面向内存,存储在内存中,后者主要是面向CPU,通过CUP实现计算。
注意:
- Stream自己不会存储元素。
- Stream不会改变源对象。相反,他们会返回一个持有结果的新Stream。
- Stream操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
Stream的操作三个步骤
-
创建Stream
一个数据源(如:集合,数组),获取一个流
-
中间操作
一个中间操作链,对数据源的数据进行处理
-
终止操作(终端操作)
一旦执行终止操作,就执行中间操作链,并产生结果。之后,不会再被使用
实例
//实例
public static void main(String[] args) {
//构建一个集合
List<String> list = new ArrayList<>();
list.add("zk1");
list.add("qoi");
list.add("jo");
list.add("ji");
list.add("rne");
//过滤条件
list.stream().filter(s -> s.startsWith("z"))//把里面包含z的字符取出来
.filter(s -> s.length() == 3)//把里面字符长度等于3的取出来
//借助于consumer中的accept(T t) 打印输出
.forEach(System.out::println);//打印
}
创建stream
方式1 通过集合
Java8 中的 Collection 接口被扩展,提供了两个获取流的方法:
default Stream<E> stream() : 返回一个顺序流
default Stream<E> parallelStream() : 返回一个并行流
方式二 通过数组
Java8 中的Arrays 的静态方法 stream() 可以获取数组流:
static <T> Stream<T> stream(T[] array): 返回一个流
重载形式,能够处理对应基本类型的数组
public static IntStream stream(int[] array)
public static LongStream stream(long[] array)
public static DoubleStream stream(double[] array)
通过Stream的of()
可以调用Stream类静态方法 of(), 通过显示值创建一个流。它可以接收任意数量的参数。
public static<T> Stream<T> of(T... values); 返回一个流
创建无限流
可以使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。
迭代
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
生成
public static<T> Stream<T> generate(Supplier<T> s)
Stream的中间操作
- 多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”
- 流模型中操作很多,大致上可以把其中的api方法分层两部分:
- 延迟方法:返回值类型都是Stream接口自身,因此可以支持链式操作。
- 终结方法:返回值就不是Stream接口自身,因此不能再进行链式操作。比如:count() forEach()
//筛选与切片
filter(Predicate<? super T> predicate) 返回由与此给定谓词匹配的此流的元素组成的流。 借助于Predicate函数接口当中的抽象方法 test(T t)对数据进行过滤。
该方法接收一个函数式接口Predicate,可以使用Lambda表达式进行条件筛选。
distinct() 筛选,通过流所生成元素的hashCode()和equals()去除重复元素
limit(long maxSize) 截断流,使其元素不超过给定数量。否则就不进行操作。
skip(long n) 跳过元素,返回一个扔掉前n个元素的流,若流中的元素不足n个,则返回一个长度为0的空流。与limit(n)互补
//映射(将流中的数据)
map(Function<? super T ,? extends R> mapper) 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
Function是一个函数式接口作为方法参数可以将当前流中的T数据转换成另外一种R类型的数据(接口本身接口两个数据T/R,方法返回一个数据R)。
mapToDouble(ToDoubleFuction f) 接收一个函数作为参数,该函式会被应用到每个元素上,产生一个新的DoubleStream。
mapTolnt(TolntFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的IntStream。
mapToLong(ToLongFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的LongStream。
flatMap(Function f) 接收一个函数作为参数,将流中道德每个值都换成另一个流,然后把所有流连接成一个流。
//排序
sorted() 产生一个新流,其中按自然排序。
sorted(Comparator com) 产生一个新流,其中按比较顺序排序
//合并
static concat(Stream<? extends T> a, Stream<? extends T> b) 如果有两个流,希望合并成一个流,那么可以使用concat静态方法
//生成对象 无限流
static <E> generate (Supplier<T> s)
Stream的终止操作
-
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:list integer 甚至是void。
-
流进行了终止操作后,不能再次使用。
//匹配与查找
allMatch(Predicate p) 检查是否匹配所有元素
anyMatch(Predicate p) 检车是否至少匹配一个元素
noneMatch(Predicate p) 检车是否没有匹配所有元素
findFirst() 返回第一个元素
findAny() 返回当前流中的任意元素
long count() 返回流中元素总数(像单列集合种的size()一样),返回值long类型,区别于size()
max(Comparator c) 返回流中最大值
min(Comparator c) 返回流中最小值
void forEach(Consumer<? super T> acction) 内部迭代(使用Collection 接口需要用户做迭代,称为外部迭代。相反,Stream API使用内部迭代--他帮你把迭代做了)
//归约
reduce(T iden,BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。返回T
reduce(BinaryOperator b) 可以将流中元素反复节后起来得到一个值。返回Optional<T>
//备注:map和reduce的连接通常称为map-reduce模式,因Google用他来进行网络搜索而出名。
//收集
collect(Collector c) 将流转换为其他形式。接收一个Collector接口的实现,用于给Stream中元素做汇总的方法
//Collector接口中方法的实现决定了如何对流执行收集的操作(如收到集到list set map)。
//另外,Collections实用类提供了很多静态方法,可以方便的创建常见收集器实例,