学习笔记-第四周-交流电机选优

交流电机优选

       电机启动、变速、制动的方法不唯一,本文主要采用变频调速的方式。通过调试参数发现,电机的稳定速度与频率成正比,所以根据稳定速度选择对应的定子频率。例如,fs = 27Hz对应n=799r/min, fs=19.8Hz对应600r/min左右。求得比例系数k=fs/n=0.0330-0.0338。

  通过调整频率大小实现速度的变化,调速时为了实现转速平滑变化、防止输出转矩过大,可以设置过渡频率(介于调速前后稳定频率之间)。

 

采取策略

  1. 控制电机带重物上升,从静止加速到800r/min—— fs=27Hz启动直至达到稳定速度的98%;
  2. 保持800r/min匀速运动0.5s—— fs=27Hz保持匀速运行;
  3. 减速到静止,保持静止状态0.5s—— 先将fs减少至15Hz,持续50ms后将频率降至0.2Hz(此时稳定频率小于5r/min,可视为静止);
  4. 带重物下降,从静止达到600r/min—— 首先需要改变电机旋转方向,我们可以通过多路开关改变各相电路相位关系:初始条件下,B相电压落后A相-2/3pi;C相电压落后A相-4/pi。现在调整为B相电压超前A相2 pi /3;C相电压超前A相4 pi /3。之后,在200ms的时间内将定子频率fs从0.2Hz线性增长至19.8Hz。再在300ms左右的时间内,将定子频率fs稳定在19.8Hz,使电机反向加速至600r/min。
  5. 保持600r/min匀速运动0.6s—— fs=19.8Hz电机稳定运行。
  6. 减速到静止—— fs=0Hz,电机转速快速衰减至0。

 

仿真结果电机完成整个过程大致需要3200ms,过程中加速过程较为平滑,减速过程较为陡峭,输出转矩(电流)偏大。全过程转速变化最大超调量小于5%。

转速曲线

 代码如下:

model SACIM "A Simple AC Induction Motor Model"
  type Voltage=Real(unit="V");
  type Current=Real(unit="A");
  type Resistance=Real(unit="Ohm");
  type Inductance=Real(unit="H");
  type Speed=Real(unit="r/min");
  type Torque=Real(unit="N.m");
  type Inertia=Real(unit="kg.m^2");
  type Frequency=Real(unit="Hz");
  type Flux=Real(unit="Wb");
  type Angle=Real(unit="rad");
  type AngularVelocity=Real(unit="rad/s");
  
  constant Real Pi = 3.1415926;     

  Current i_A"A Phase Current of Stator";
  Current i_B"B Phase Current of Stator";
  Current i_C"C Phase Current of Stator";
  Voltage u_A"A Phase Voltage of Stator";
  Voltage u_B"B Phase Voltage of Stator";
  Voltage u_C"C Phase Voltage of Stator";
  Current i_a"A Phase Current of Rotor";
  Current i_b"B Phase Current of Rotor";
  Current i_c"C Phase Current of Rotor";
  Frequency f_s"Frequency of Stator";
  Torque Tm"Torque of the Motor";
  Speed n"Speed of the Motor";

  Flux Psi_A"A Phase Flux-Linkage of Stator";
  Flux Psi_B"B Phase Flux-Linkage of Stator";
  Flux Psi_C"C Phase Flux-Linkage of Stator";
  Flux Psi_a"a Phase Flux-Linkage of Rotor";
  Flux Psi_b"b Phase Flux-Linkage of Rotor";
  Flux Psi_c"c Phase Flux-Linkage of Rotor";

  Angle phi"Electrical Angle of Rotor";
  Angle phi_m"Mechnical Angle of Rotor";
  AngularVelocity w"Angular Velocity of Rotor";

  Torque Tl"Load Torque";  
  
  parameter Resistance Rs = 0.531+0.5 "Stator Resistance";
  parameter Resistance Rr = 0.408+0.5 "Rotor Resistance";
  parameter Inductance Ls = 0.00252"Stator Leakage Inductance";
  parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";
  parameter Inductance Lm = 0.00847"Mutual Inductance";    
  parameter Frequency f_N = 50"Rated Frequency of Stator";
  parameter Voltage u_N = 220"Rated Phase Voltage of Stator";
  parameter Real p =2"number of pole pairs";
  parameter Inertia Jm = 0.1"Motor Inertia";
  parameter Inertia Jl = 1"Load Inertia";
  parameter Frequency f1 = 27;
  parameter Frequency f2 = 15;
  parameter Frequency f3 = 0.2;
  parameter Frequency f4 = 19.8;
  parameter Frequency f5 = 19.8;
  parameter Real t1 = 100+500+671; //加速 800r/min恒速
  parameter Real t2 = t1+50;  //减速
  parameter Real t3 = t2+600;  //静止0.5s
  parameter Real t4 = t3+200;  //反向加速
  parameter Real t5 = t4+300+600;  //600r/min恒速
  // parameter Real t6 = t5+200;  //
  
  
  Real time1(start=0);
  Real time2(start=0);
  Real time3(start=0);
  
initial equation 

  Psi_A = 0;    
  Psi_B = 0;
  Psi_C = 0;
  Psi_a = 0;    
  Psi_b = 0;
  Psi_c = 0;
  phi = 0;
  w = 0;
  
equation
    
  u_A = Rs * i_A + 1000 * der(Psi_A);
  u_B = Rs * i_B + 1000 * der(Psi_B);
  u_C = Rs * i_C + 1000 * der(Psi_C);

  0 = Rr * i_a + 1000 * der(Psi_a);
  0 = Rr * i_b + 1000 * der(Psi_b);
  0 = Rr * i_c + 1000 * der(Psi_c);

  Psi_A =   (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C +        (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;
  Psi_B = (-0.5*Lm)*i_A +   (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a +        (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;
  Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B +   (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b +        (Lm*cos(phi))*i_c;

  Psi_a =  (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C +   (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;
  Psi_b = (Lm*cos(phi+2*Pi/3))*i_A +        (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a +   (Lm+Lr)*i_b + (-0.5*Lm)*i_c;
  Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B +        (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b +   (Lm+Lr)*i_c;
  
  Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

  w = 1000 * der(phi_m);
  
  phi_m = phi/p;
  n= w*60/(2*Pi);

  Tm-Tl = (Jm+Jl) * 1000 * der(w);

  if time <= 100 then
    u_A = 0;
    u_B = 0;
    u_C = 0;
    Tl = 0;
  elseif time <= t4 then
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);  
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);  
    Tl = 15;
  else
    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);  
    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000+2*Pi/3);
    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000+4*Pi/3);    
    Tl = 15;
  end if;
 
  
algorithm 
  
  if time <= 100 then
    f_s := 0;    
  elseif time <= t1 then 
    f_s := f1; 
  elseif time <= t2 then
    f_s := f2; 
    //f_s := (time-t1)/(t2-t1)*(f2-f1)+f1;
    //f_s = exp(-(time-t1)/(t2-t1)*4)*(f1-f2)+f2;
    //f_s = (1-exp(-(time-t1)/(t2-t1)*5))*(f2-f1)+f1;
  elseif time <= t3 then 
    f_s := f3;
  elseif time <= t4 then
    //f_s := f4;
    f_s := (time-t3)/(t4-t3)*(f4-f3)+f3;
    //f_s = exp(-(time-t3)/(t4-t3)*4)*(f3-f4)+f4;
    //f_s = (1-exp(-(time-t3)/(t4-t3)*5))*(f4-f3)+f3;
  elseif time <= t5 then    
    f_s := f5;
  else    
    f_s := 0;
  end if;
  
  //u_N := 220*f_s/f1;
 

if n > 800*0.98 and n < 800*0.99 then
time1 := time;
//time2 := time1 + 500;
end if;
if n < 0.1 then 
  time2 := time;
end if;
if n > -600*0.98 and n < -600*0.99 then 
  time3 := time;
end if;


end SACIM;

  

posted on 2016-03-20 22:05  zjzero  阅读(351)  评论(0编辑  收藏  举报

导航