04 2013 档案

摘要:设 $n\in N,n\ge2,a>0$ 证明 :$(a-1)((n+1)a^n+(n-1)-(n+1)a-(n-1)a^{n+1})\le0$ 阅读全文
posted @ 2013-04-17 10:35 my2357 阅读(129) 评论(0) 推荐(0)
摘要:设$a_i\in R^{*}(i=1,2,...n)$,求证:$\frac{1}{a_1}+\frac{2}{a_1+a_2}+\cdots+\frac{n}{a_{1}+a_{2}+\cdots+a_{n}}\le 2\sum_{i=1}^{n}\frac{1}{a_i}$ 阅读全文
posted @ 2013-04-16 14:16 my2357 阅读(250) 评论(0) 推荐(0)
摘要: 阅读全文
posted @ 2013-04-14 09:13 my2357 阅读(140) 评论(0) 推荐(0)
摘要:设$a_{i}>0,b_{i}>0,i=1,2,\cdots ,n.$求证:$$\sum_{i=1}^{n}\frac{a_{i}b_{i}}{a_{i}+b{i}}\le \frac{(\sum_{i=1}^{n}a_{i})(\sum_{i=1}^{n}b_{i})}{\sum_{i=1}^{n}a_{i}+\sum_{i=1}^{n}b_{i}}$$见<<数学奥林匹克教程>>P15 阅读全文
posted @ 2013-04-14 08:58 my2357 阅读(197) 评论(0) 推荐(0)
摘要:已知$n\in N^{*}$ 若$n^4+2n^3+5n^2+12n+5$为完全平方数,则$n=_____$Solve:设$m^2=n^4+2n^3+5n^2+12n+5,$$\because (n^2+n+3)^2\ge (n^2+n+3)^2-2(n-1)(n-2)= m^2=(n^2+n+2)^2+8n+1\ge (n^2+n+2)^2,$$\therefore m^2=(n^2+n+2)^2 orm^2=(n^2+n+3)^2$ 容易验证当$m^2=(n^2+n+3)^2$时,$n=1 or n=2$ 阅读全文
posted @ 2013-04-13 10:45 my2357 阅读(171) 评论(0) 推荐(0)
摘要:\[ \left\{\begin{matrix}x^4+y^2-xy^3-\tfrac{9}{8}x=0 &\\ y^4+x^2-yx^3-\tfrac{9}{8}y=0 &\end{matrix}\right. \]http://www.artofproblemsolving.com/Forum/viewtopic.php?f=36&t=104479 阅读全文
posted @ 2013-04-06 21:52 my2357 阅读(130) 评论(0) 推荐(0)
摘要:$ a^3+b^3+c^3-a^2b-b^2c-c^2a=\frac{\sum_{cyc}(3a^2-2ab-c^2)^2+(\sum_{cyc}(a-b)^2)((a+b+c)^2+5(ab+bc+ca))}{12(a+b+c)} $http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=406991&p=2273149#p2273149 阅读全文
posted @ 2013-04-06 12:25 my2357 阅读(175) 评论(0) 推荐(0)