基本排序算法:Python实现
基本排序算法,包括冒泡排序,插入排序,选择排序,堆排序,快速排序等。
【冒泡排序】
复杂度是n*n
#coding:utf8 #author:HaxtraZ #description:冒泡排序 def bubblesort1(a): #每次找到一个最小元素,放到数组首部 n=len(a) for i in range(0,n-1): swapped=False for j in range(n-1,i,-1): if a[j]<a[j-1]: a[j],a[j-1]=a[j-1],a[j] swapped=True if not swapped: break def bubblesort2(a): #这个版本的解释,在谭浩强C++2004版P137 #每次找到一个最大元素并放到数组末尾 #边界处做了优化 n=len(a) for i in range(0,n-1): swapped=False for j in range(0, n-i-1): if a[j]>a[j+1]: a[j],a[j+1]=a[j+1],a[j] swapped=True if not swapped: break def bubblesort3(a): #这个版本来自维基百科 #外层循环本来有点问题的,如果是range(len(a)-1,1,-1) #那么当输入数据为3,5,1时,结果不正确 #当然,维基百科上这个错误我已经修改过了。 for j in range(len(a)-1, 0, -1): for i in range(0, j): if a[i]>a[i+1]: a[i],a[i+1]=a[i+1],a[i]
【插入排序】
复杂度是n*n
#coding:utf8 #author:HaxtraZ def insertion_sort1(a): #线性插入排序 for j in range(1, len(a)): key = a[j] i = j - 1 while i>=0 and a[i]>key: a[i+1] = a[i] i = i-1 a[i+1] = key def binInsertSort(a): #二分插入排序 n = len(a) for j in range(1, n): key = a[j] i = j - 1 if key > a[i]: continue l, r = 0, i while l <= r: #print l, r mid = (l + r) / 2 if key < a[mid]: r = mid - 1 else: l = mid + 1 k = j while k > l: a[k] = a[k - 1] k = k - 1 a[l] = key
【选择排序】
复杂度是n*n
#coding:utf8 #author:HaxtraZ #description:选择排序 def selectsort1(a): #每次找最小元素 n=len(a) for i in range(0, n-1): for j in range(i+1, n): minpos=i #minpos用于记录最小元素的下标 if a[j]<a[minpos]: minpos=j #如果在这里就交换a[j]和a[minpos],那就是bubblesort if minpos!=i: a[minpos],a[i]=a[i],a[minpos] def selectsort2(a): #每次找最大元素 n=len(n) for i in range(n-1, 0, -1): maxpos=0 for j in range(1, i+1): if a[j]>a[maxpos]: maxpos=j if maxpos!=i: a[i],a[maxpos]=a[maxpos],a[i]
【堆排序】
复杂度是nlogn
#coding:utf8 #author:HaxtraZ #description:堆排序 #修改自《算法导论》2nd Edition def LEFT(i): return 2*i+1 def RIGHT(i): return 2*i+2 def PARENT(i): return (i-1)/2 def MAX_HEAPIFY(a,i,heapsize): l=LEFT(i) r=RIGHT(i) if l<heapsize and a[l]>a[i]: largest=l else: largest=i if r<heapsize and a[r]>a[largest]: largest=r if largest!=i: a[i],a[largest]=a[largest],a[i] MAX_HEAPIFY(a,largest,heapsize) def BUILD_MAX_HEAP(a): heapsize=len(a) i=PARENT(len(a)-1) while i>=0: MAX_HEAPIFY(a,i,heapsize) i -= 1 def HEAP_SORT(a): BUILD_MAX_HEAP(a) n=len(a) heapsize=n for i in range(n-1, 0, -1): a[0],a[i]=a[i],a[0] heapsize-=1 MAX_HEAPIFY(a,0,heapsize) a=[1,3,2,4,8,6,22,9] HEAP_SORT(a) print a
【快速排序】
复杂度是nlogn
#coding:utf8 #version1 '''参考自http://interactivepython.org/courselib/static/pythonds/SortSearch/sorting.html''' def quickSort(alist): quickSortHelper(alist,0,len(alist)-1) def quickSortHelper(alist,first,last): if first<last: splitpoint = partition(alist,first,last) quickSortHelper(alist,first,splitpoint-1) quickSortHelper(alist,splitpoint+1,last) def partition(alist,first,last): pivotvalue = alist[first] leftmark = first+1 rightmark = last done = False while not done: while leftmark <= rightmark and \ alist[leftmark] <= pivotvalue: leftmark = leftmark + 1 while alist[rightmark] >= pivotvalue and \ rightmark >= leftmark: rightmark = rightmark -1 if rightmark < leftmark: done = True else: temp = alist[leftmark] alist[leftmark] = alist[rightmark] alist[rightmark] = temp temp = alist[first] alist[first] = alist[rightmark] alist[rightmark] = temp return rightmark alist = [54,26,93,17,77,31,44,55,20] quickSort(alist) print(alist)
Greatness is never a given, it must be earned.