OpenCV摄像头简单程序

无论是处理现有视频文件还是实时读取摄像头,其实都是读取连续的帧(frame)。每个frame都可以看做是一个图像(Mat),图像处理的方式就可以用在video的处理上了。现在,动手试一试。

【代码1】用霍夫变换(Hough Transform)检测直线并且显示在实时video中

 1 #include <cv.h>
 2 #include <highgui.h>
 3 #include <iostream>
 4 #include <vector>
 5 
 6 using namespace std;
 7 using namespace cv;
 8 
 9 #define PI 3.1415926
10 
11 class LineFinder{
12 private:
13     Mat img;
14     vector<Vec4i>lines;
15     double deltaRho;
16     double deltaTheta;
17     int minVote;
18     double minLength;
19     double maxGap;
20 public:
21     LineFinder():deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.){}
22     
23     void setAccResolution(double dRho, double dTheta){
24         deltaRho=dRho;
25         deltaTheta=dTheta;
26     }
27     void setMinVote(int minv){
28         minVote=minv;
29     }
30     void setLineLengthAndGap(double length, double gap){
31         minLength=length;
32         maxGap=gap;
33     }
34     vector<Vec4i>findLines(Mat& binary){
35         lines.clear();
36         HoughLinesP(binary, lines, deltaRho, deltaTheta, minVote, minLength, maxGap);
37         return lines;
38     }
39     void drawDetectedLines(Mat &image, Scalar color=Scalar(255, 255, 255)){
40         vector<Vec4i>::const_iterator it2=lines.begin();
41         while(it2!=lines.end()){
42             Point pt1((*it2)[0], (*it2)[1]);
43             Point pt2((*it2)[2], (*it2)[3]);
44             line(image, pt1, pt2, color);
45             ++it2;
46         }
47     }
48 };
49 
50 int main(){
51     
52     
53     string msg="press q , Q or ESC to close this program";
54     cout << msg << endl;
55     VideoCapture capture(0);
56     if(!capture.isOpened()) return 1;
57     Mat image; //frame of video
58     string window_name="Extracted Frame";
59     namedWindow(window_name);
60     while(true){
61         capture >> image;
62         if(image.data){
63             Mat contours;
64             Canny(image, contours, 125, 350);
65             LineFinder finder;
66             finder.setLineLengthAndGap(100, 20);
67             finder.setMinVote(80);
68             vector<Vec4i>lines=finder.findLines(contours);
69             finder.drawDetectedLines(image);
70             namedWindow("Detected Lines with HoughP");
71             imshow("Detected Lines with HoughP", image);
72         }
73         if(waitKey(30)>=0) break;
74     }
75     
76     
77     return 0;
78 }

【代码2】矩形检测

  1 // The "Square Detector" program.
  2 // It loads several images sequentially and tries to find squares in
  3 // each image
  4 
  5 #include "opencv2/core/core.hpp"
  6 #include "opencv2/imgproc/imgproc.hpp"
  7 #include "opencv2/highgui/highgui.hpp"
  8 
  9 #include <iostream>
 10 #include <math.h>
 11 #include <string.h>
 12 
 13 using namespace cv;
 14 using namespace std;
 15 
 16 static void help()
 17 {
 18     cout <<
 19     "\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
 20     "memory storage (it's got it all folks) to find\n"
 21     "squares in a list of images pic1-6.png\n"
 22     "Returns sequence of squares detected on the image.\n"
 23     "the sequence is stored in the specified memory storage\n"
 24     "Call:\n"
 25     "./squares\n"
 26     "Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
 27 }
 28 
 29 
 30 int thresh = 50, N = 11;
 31 const char* wndname = "Square Detection Demo";
 32 
 33 // helper function:
 34 // finds a cosine of angle between vectors
 35 // from pt0->pt1 and from pt0->pt2
 36 static double angle( Point pt1, Point pt2, Point pt0 )
 37 {
 38     double dx1 = pt1.x - pt0.x;
 39     double dy1 = pt1.y - pt0.y;
 40     double dx2 = pt2.x - pt0.x;
 41     double dy2 = pt2.y - pt0.y;
 42     return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
 43 }
 44 
 45 // returns sequence of squares detected on the image.
 46 // the sequence is stored in the specified memory storage
 47 static void findSquares( const Mat& image, vector<vector<Point> >& squares )
 48 {
 49     squares.clear();
 50 
 51     Mat pyr, timg, gray0(image.size(), CV_8U), gray;
 52 
 53     // down-scale and upscale the image to filter out the noise
 54     pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
 55     pyrUp(pyr, timg, image.size());
 56     vector<vector<Point> > contours;
 57 
 58     // find squares in every color plane of the image
 59     for( int c = 0; c < 3; c++ )
 60     {
 61         int ch[] = {c, 0};
 62         mixChannels(&timg, 1, &gray0, 1, ch, 1);
 63 
 64         // try several threshold levels
 65         for( int l = 0; l < N; l++ )
 66         {
 67             // hack: use Canny instead of zero threshold level.
 68             // Canny helps to catch squares with gradient shading
 69             if( l == 0 )
 70             {
 71                 // apply Canny. Take the upper threshold from slider
 72                 // and set the lower to 0 (which forces edges merging)
 73                 Canny(gray0, gray, 0, thresh, 5);
 74                 // dilate canny output to remove potential
 75                 // holes between edge segments
 76                 dilate(gray, gray, Mat(), Point(-1,-1));
 77             }
 78             else
 79             {
 80                 // apply threshold if l!=0:
 81                 //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 82                 gray = gray0 >= (l+1)*255/N;
 83             }
 84 
 85             // find contours and store them all as a list
 86             findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
 87 
 88             vector<Point> approx;
 89 
 90             // test each contour
 91             for( size_t i = 0; i < contours.size(); i++ )
 92             {
 93                 // approximate contour with accuracy proportional
 94                 // to the contour perimeter
 95                 approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
 96 
 97                 // square contours should have 4 vertices after approximation
 98                 // relatively large area (to filter out noisy contours)
 99                 // and be convex.
100                 // Note: absolute value of an area is used because
101                 // area may be positive or negative - in accordance with the
102                 // contour orientation
103                 if( approx.size() == 4 &&
104                     fabs(contourArea(Mat(approx))) > 1000 &&
105                     isContourConvex(Mat(approx)) )
106                 {
107                     double maxCosine = 0;
108 
109                     for( int j = 2; j < 5; j++ )
110                     {
111                         // find the maximum cosine of the angle between joint edges
112                         double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
113                         maxCosine = MAX(maxCosine, cosine);
114                     }
115 
116                     // if cosines of all angles are small
117                     // (all angles are ~90 degree) then write quandrange
118                     // vertices to resultant sequence
119                     if( maxCosine < 0.3 )
120                         squares.push_back(approx);
121                 }
122             }
123         }
124     }
125 }
126 
127 
128 // the function draws all the squares in the image
129 static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
130 {
131     for( size_t i = 0; i < squares.size(); i++ )
132     {
133         const Point* p = &squares[i][0];
134         int n = (int)squares[i].size();
135         polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
136     }
137 
138     imshow(wndname, image);
139 }
140 
141 int main(){
142 
143 
144     string msg="press q , Q or ESC to close this program";
145     cout << msg << endl;
146     VideoCapture capture(0);
147     if(!capture.isOpened()) return 1;
148     Mat image; //frame of video
149     string window_name="Extracted Frame";
150     namedWindow(window_name);
151     while(true){
152         capture >> image;
153         vector<vector<Point> > squares;
154         if(image.data){
155             findSquares(image, squares);
156             drawSquares(image, squares);
157         }
158         if(waitKey(30)>=0) break;
159     }
160 
161     return 0;
162 }

 

posted @ 2013-05-06 22:52  ChrisZZ  阅读(568)  评论(0编辑  收藏  举报