uva10891Game of sum

题意:经典的取石子游戏是这样的:有一堆石子,A、B两个人轮流取,每次取一颗,只能从边上取,每个石子有相应的价值,A、B两人都想使得自己的价值最多,两个人足够聪明,问最后价值分别是多少

本题则是可以取多颗,但仍然只能从一侧取得

分析:状态转移方程

best[i][j]=sum[i][j]-min(best[i][j-k],best[i+k][j], 0);{1<=k=j-i+1}.

使用了记忆化的方法,O(n3),书上说有进一步的优化,不过当前数据下已经很快了(64ms)

代码:

View Code
 1 #include <stdio.h>
 2 #include <iostream>
 3 #include <string.h>
 4 using namespace std;
 5 const int MAXN = 100 + 10;
 6 #define DEBUG
 7 int min(int a, int b){
 8     return a<b?a:b;
 9 }
10 int s[MAXN], a[MAXN], d[MAXN][MAXN], vis[MAXN][MAXN], n;
11 int dp(int i, int j){
12     if(vis[i][j]) return d[i][j];
13     vis[i][j]=1;
14     int m=0, k;
15     for(k=i+1; k<=j; k++) m=min(m, dp(k, j));
16     for(k=i; k<j; k++) m=min(m, dp(i, k));
17     d[i][j]=s[j]-s[i-1]-m;;
18     return d[i][j];
19 }
20 int main(){
21 #ifndef DEBUG
22     freopen("in.txt", "r", stdin);
23 #endif
24     while(scanf("%d", &n)!=EOF && n){
25         s[0]=0;
26         int i;
27         for(i=1; i<=n; i++){
28             scanf("%d", &a[i]);
29             s[i] = s[i-1] + a[i];
30         }
31         memset(vis, 0, sizeof(vis));
32         printf("%d\n", 2*dp(1,n)-s[n]);
33     }
34     return 0;
35 }

 

 

posted @ 2013-02-14 13:49  ChrisZZ  阅读(136)  评论(0编辑  收藏  举报