UVA3295
题意:给出一个a*b的网格,在网格上取不共线的三点构成三角形,求三角形总数。
分析:就是一一道简单的组合数计算题目,设总结点数为n,则取三个节点的个数为C(n,3),然后减去横向、竖向、斜向的三点共线的个数即可,斜线三点共线等价于所枚举的矩形的长宽成倍数关系,即gcd不为1
代码如下:
#include <stdio.h> #include <iostream> using namespace std; long long gcd(long long a, long long b){ if(a%b==0) return b; return gcd(b, a%b); } int main(){ long long a, b; int cas = 1; while(scanf("%lld%lld", &a, &b)!=EOF && (a||b)){ long long n = (a+1)*(b+1); long long sum1 = n*(n-1)*(n-2)/6; //C(n,3) long long sum2 = (b+1)*(a+1)*a*(a-1)/6 + (a+1)*(b+1)*b*(b-1)/6; //横向或竖向三点共线的个数 long long sum3 = 0; //斜线上三点共线的个数的一半 int i, j; for(i=2; i<=a; i++) for(j=2; j<=b; j++) sum3 += (gcd(i,j)-1) * (a-i+1) * (b-j+1); a++;b++; long long ans = sum1 - 2*sum3 - sum2; printf("Case %d: %lld\n", cas++, ans); } return 0; }
Greatness is never a given, it must be earned.