[ACM_模拟] POJ1068 Parencodings (两种括号编码转化 规律 模拟)

Description

Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

Following is an example of the above encodings: 

S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

Output

The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

Sample Input

2
6
4 5 6 6 6 6
9 
4 6 6 6 6 8 9 9 9

Sample Output

1 1 1 4 5 6
1 1 2 4 5 1 1 3 9

Source

 

题目大意:一组标准的括号(就是每一个左括号的都有且仅有一个右边的对应,符合常理),其编码方式有两种:

                  P:p[i]表示第i个右括号左边有的左括号数量

                  W:w[i]表示从与第i个右括号对应的左括号开始至第i个右括号共有右括号的数量

              现在给出P串输出W串

解题思路:用b[]统计第i个右括号和第i-1个右括号之间有多少个左括号,然后模拟流程(对于每个右括号向前找

最近左括号,然后在找到的左括号对应区间的b[]减1,依次寻找....

 1 #include<iostream>
 2 #include<cmath>
 3 #include<algorithm>
 4 using namespace std;
 5 int main(){
 6     int n,a[25],b[25]; 
 7     int t;cin>>t;
 8     while(t--){
 9         cin>>n;              //输入
10         for(int i=0;i<n;i++)
11             cin>>a[i];
12         b[0]=a[0];           //求b[]
13         for(int i=1;i<n;i++)
14             b[i]=a[i]-a[i-1];
15         cout<<1;             //求解并输出
16         for(int i=1;i<n;i++){
17             for(int j=i;j>=0;j--){
18                 if(b[j]!=0){
19                     cout<<' '<<i-j+1;
20                     b[j]--;
21                     break;
22                 }
23             }
24         }cout<<'\n';
25     }return 0;
26 }

 

 

posted @ 2013-08-08 16:00  beautifulzzzz  阅读(428)  评论(0编辑  收藏  举报