POJ2240 Arbitrage
Arbitrage
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10997 | Accepted: 4622 |
Description
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.
Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
Input
The
input will contain one or more test cases. Om the first line of each
test case there is an integer n (1<=n<=30), representing the
number of different currencies. The next n lines each contain the name
of one currency. Within a name no spaces will appear. The next line
contains one integer m, representing the length of the table to follow.
The last m lines each contain the name ci of a source currency, a real
number rij which represents the exchange rate from ci to cj and a name
cj of the destination currency. Exchanges which do not appear in the
table are impossible.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
Output
For
each test case, print one line telling whether arbitrage is possible or
not in the format "Case case: Yes" respectively "Case case: No".
Sample Input
3 USDollar BritishPound FrenchFranc 3 USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 3 USDollar BritishPound FrenchFranc 6 USDollar 0.5 BritishPound USDollar 4.9 FrenchFranc BritishPound 10.0 FrenchFranc BritishPound 1.99 USDollar FrenchFranc 0.09 BritishPound FrenchFranc 0.19 USDollar 0
Sample Output
Case 1: Yes Case 2: No
Source
思路:题目首先给出N中货币,然后给出了这N种货币之间的兑换的兑换率。如 USDollar 0.5 BritishPound 表示 :1 USDollar兑换成0.5 BritishPound。问在这N种货币中是否有货币可以经过若干次兑换后,兑换成原来的货币可以使货币量增加。
本题其实是FLOYD的变形。将变换率作为构成图的路径的权重。这儿构成的图是一个有向图。最后将松弛操作变换为:if(dis[i][j]<dis[i][k]*dis[k][j])。
1 #include <cstdlib> 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #include <cmath> 6 #include <string> 7 #include <map> 8 9 #define MAXINT 99999999 10 11 using namespace std; 12 13 14 map<string,int>maps; 15 16 int length=1; 17 18 19 int insertv(string v) 20 { 21 if(maps.find(v)==maps.end()) 22 {maps[v]=length++;} 23 return 0; 24 } 25 26 27 28 29 30 int findv(string v) 31 { 32 return maps[v]; 33 } 34 35 36 37 38 double data[34][34]; 39 40 41 int ncount=0; 42 43 44 int main(int argc, char *argv[]) 45 { 46 int n,m; 47 int i,j,k; 48 49 while(scanf("%d",&n)!=EOF) 50 { 51 ncount++; 52 53 54 if(n==0) 55 break; 56 getchar(); 57 length=1; 58 59 maps.clear(); 60 61 62 63 for(i=0;i<n;i++) 64 {char str[1000]; 65 scanf("%s",str); 66 getchar(); 67 insertv(str); 68 } 69 70 71 scanf("%d",&m); 72 73 getchar(); 74 75 for(i=1;i<length;i++) 76 for(j=1;j<length;j++) 77 data[i][j]=1; 78 79 for(i=1;i<length;i++) 80 data[i][i]=1; 81 82 83 84 85 86 for(i=0;i<m;i++) 87 { 88 char a[1000],b[1000]; 89 double rate; 90 91 scanf("%s%lf%s",a,&rate,b); 92 93 //cout<<a<<' '<<rate<<' '<<b<<endl; 94 95 int v1=findv(a); 96 int v2=findv(b); 97 98 data[v1][v2]=rate; 99 100 101 102 103 getchar(); 104 } 105 106 107 108 for(k=1;k<=n;k++) 109 for(i=1;i<=n;i++) 110 for(j=1;j<=n;j++) 111 { 112 if(data[i][j]<data[i][k]*data[k][j]) 113 data[i][j]=data[i][k]*data[k][j]; 114 } 115 116 117 118 double maxcurr=0; 119 120 121 for(i=1;i<=n;i++) 122 { 123 if(maxcurr<data[i][i]) 124 maxcurr=data[i][i]; 125 } 126 127 printf("Case %d: ",ncount); 128 if(maxcurr>1.0) 129 printf("Yes\n"); 130 else 131 printf("No\n"); 132 } 133 134 135 136 137 138 139 140 141 142 143 144 145 //system("PAUSE"); 146 return EXIT_SUCCESS; 147 }