(转载)文本挖掘预处理之TF-IDF

原地址

前言

在文本挖掘预处理之向量化与Hash Trick中,我们讲到,在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的原理做一个总结。

1. 文本向量化特征的不足

在将文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如在文本挖掘预处理之向量化与Hash Trick这篇文章中,我们将下面4个短文本做了词频统计:

corpus=["I come to China to travel", 
    "This is a car polupar in China",          
    "I love tea and Apple ",   
    "The work is to write some papers in science"]

不考虑停用词,处理后得到的词向量如下:

[[0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0]
 [0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0]
 [1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1]]

如果我们直接将统计词频后的19维特征做为文本分类的输入,会发现有一些问题。比如第一个文本,我们发现"come","China"和“Travel”各出现1次,而“to“出现了两次。似乎看起来这个文本与”to“这个特征更关系紧密。但是实际上”to“是一个非常普遍的词,几乎所有的文本都会用到,因此虽然它的词频为2,但是重要性却比词频为1的"China"和“Travel”要低的多。如果我们的向量化特征仅仅用词频表示就无法反应这一点。因此我们需要进一步的预处理来反应文本的这个特征,而这个预处理就是TF-IDF

2. TF-IDF概述

TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。

前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。在上一节中,我们讲到几乎所有文本都会出现的"to"其词频虽然高,但是重要性却应该比词频低的"China"和“Travel”要低。我们的IDF就是来帮助我们来反应这个词的重要性的,进而修正仅仅用词频表示的词特征值

概括来讲, IDF反应了一个词在所有文本中出现的频率

  • 如果一个词在很多的文本中出现,那么它的IDF值应该低,比如上文中的“to”。
  • 而反过来如果一个词在比较少的文本中出现,那么它的IDF值应该高。比如一些专业的名词如“Machine Learning”。这样的词IDF值应该高。一个极端的情况,如果一个词在所有的文本中都出现,那么它的IDF值应该为0

上面是从定性上说明IDF的作用,那么如何对一个词的IDF进行定量分析呢?这里直接给出一个词x的IDF的基本公式如下:
\(IDF(x) = log\frac{N}{N(x)}\)
其中,\(N\)代表语料库中文本的总数,而\(N(x)\)代表语料库中包含词x的文本总数。

为什么IDF的基本公式应该是是上面这样的而不是像N/N(x)这样的形式呢?这就涉及到信息论相关的一些知识了。感兴趣的朋友建议阅读吴军博士的《数学之美》第11章。

上面的IDF公式已经可以使用了,但是在一些特殊的情况会有一些小问题,比如某一个生僻词在语料库中没有,这样我们的分母为0, IDF没有意义了。所以常用的IDF我们需要做一些平滑,使语料库中没有出现的词也可以得到一个合适的IDF值。平滑的方法有很多种,最常见的IDF平滑后的公式之一为:
\(IDF(x) = log\frac{N+1}{N(x)+1} + 1\)
这里最后加1,主要是防止一些热词会有N(x)=N,导致IDF值为0, 接着TF-IDF也为0,影响整个算法的过程。

有了IDF的定义,我们就可以计算某一个词的TF-IDF值了:
\(TF-IDF(x) = TF(x) * IDF(x)\)

3. 用scikit-learn进行TF-IDF预处理

在scikit-learn中,有两种方法进行TF-IDF的预处理(完整代码).

  • 第一种方法是在用CountVectorizer类向量化之后再调用TfidfTransformer类进行预处理。
  • 第二种方法是直接用TfidfVectorizer完成向量化与TF-IDF预处理。

首先我们来看第一种方法,CountVectorizer+TfidfTransformer的组合,代码如下:

from sklearn.feature_extraction.text import TfidfTransformer  
from sklearn.feature_extraction.text import CountVectorizer  

corpus=["I come to China to travel", 
    "This is a car polupar in China",          
    "I love tea and Apple ",   
    "The work is to write some papers in science"] 

vectorizer=CountVectorizer()

transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))  
print(tfidf)

输出的各个文本各个词的TF-IDF值如下:
image

tfidf的数据类型如下:
image

现在我们用TfidfVectorizer一步到位,代码如下:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
re = tfidf2.fit_transform(corpus)
print(re)

输出的各个文本各个词的TF-IDF值和第一种的输出完全相同。大家可以自己去验证一下。

由于第二种方法比较的简洁,因此在实际应用中推荐使用,一步到位完成向量化,TF-IDF与标准化。

4. TF-IDF小结

TF-IDF是非常常用的文本挖掘预处理基本步骤,但是如果预处理中使用了Hash Trick,则一般就无法使用TF-IDF了,因为Hash Trick后我们已经无法得到哈希后的各特征的IDF的值。使用了TF-IDF并标准化以后,我们就可以使用各个文本的词特征向量作为文本的特征,进行分类或者聚类分析。

当然TF-IDF不光可以用于文本挖掘,在信息检索等很多领域都有使用。因此值得好好的理解这个方法的思想

posted on 2022-07-09 21:29  朴素贝叶斯  阅读(219)  评论(0编辑  收藏  举报

导航