Codeforces Round #511 (Div. 1) C. Region Separation(dp + 数论)
题意
一棵 \(n\) 个点的树,每个点有权值 \(a_i\) 。你想砍树。
你可以砍任意次,每次你选择一些边断开,需要满足砍完后每个连通块的权值和是相等的。求有多少种砍树方案。
\(n \le 10^6, a_i \le 10^9\)
题解
先假设只砍一次。令所有点权和为 \(S\) ,那么假设要砍成 \(k\) 个连通块,则每个连通块的权值和均为 \(\displaystyle \frac{S}{k}\) 。
考虑如何得到砍的方案,以 \(1\) 号点为根 \(dfs\) ,若当前点 \(i\) 的子树之和 \(\frac{S}{k} | \displaystyle sum_i\) ,则当前子树可以砍下来。若最后恰好砍了 \(k\) 次,那么就得到了一个合法的砍树方案。
其实这就等价于 \(\displaystyle \sum_{i=1}^{n} [\frac{S}{k} | sum_i] = k\) 。
不难看出这个对应且仅对应一种方案。如果不足 \(k\) ,那么就没有那么多个点可以分;多于 \(k\) 的情况是不可能的,因为总和不够分配。
这个式子还不够优秀,我们转化一下:
\[\begin{align}
[\frac{S}{k}|sum_i] &= [S | k \times sum_i] \\
&= [\frac{S}{\gcd(S,sum_i)}|k \times \frac{sum_i}{\gcd(S,sum_i)}] \\
&\because \frac{S}{\gcd(S,sum_i)} \bot \frac{sum_i}{\gcd(S,sum_i)} \\
&= [\frac{S}{\gcd(S,sum_i)} | k]
\end{align}
\]
然后就变成
\[\sum_{i = 1}^{n} [\frac{S}{\gcd(S,sum_i)} | k] = k
\]
显然这个我们可以枚举倍数在 \(O(n \ln n)\) 的时间内解决(注意 \(k \le n\) )
那么如果砍多次呢?可以看出如果第一次砍成了 \(x\) 块,那么第二次砍成的块数 \(y\) 必须满足 \(x|y\) 。
因为你之后的权值只能比之前分的更多,且每个联通块的权值是之前的一个因子。
这部分也可以 \(O(n \ln n)\) 算。
总结
熟悉这种分成很多块有关于 \(O(\ln n)\) 复杂度的东西就行啦qwq
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
typedef long long ll;
template<typename T> inline bool chkmin(T &a, T b) {return b < a ? a = b, 1 : 0;}
template<typename T> inline bool chkmax(T &a, T b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("C.in", "r", stdin);
freopen ("C.out", "w", stdout);
#endif
}
const int N = 1e6 + 1e3;
bitset<N> pass;
ll sum[N], dp[N]; int n, fa[N];
int main () {
File();
n = read();
For (i, 1, n) sum[i] = read();
For (i, 2, n) fa[i] = read();
Fordown (i, n, 1) sum[fa[i]] += sum[i];
For (i, 1, n) {
ll tmp = sum[1] / __gcd(sum[1], sum[i]);
if (tmp <= n) ++ dp[tmp];
}
Fordown (i, n, 1) if (dp[i])
for (int j = i * 2; j <= n; j += i) dp[j] += dp[i];
For (i, 1, n)
pass[i] = (dp[i] == i && !(sum[1] % i)), dp[i] = 0;
dp[1] = pass[1];
ll ans = 0;
For (i, 1, n) if (pass[i]) {
for (int j = i * 2; j <= n; j += i)
if (pass[j]) dp[j] += dp[i];
ans += dp[i];
}
printf ("%lld\n", ans);
return 0;
}