CS academy Binary Flips(dp)

开学啦,没啥时间写博客。。过几天就能又停课啦qwq

做点中等 \(dp\) 题来找找 noip 的感觉 233

题意

原题戳这里

给你一个 \(n \times m\) 的矩阵 \(A\) ,一开始全是 \(0\)

然后你可以对这个矩阵进行 \(k\) 次操作:

  • 每次选择一个宫格 \((i, j)\) ,将第 \(i\) 行和第 \(j\) 列的状态翻转。(注意 \((i, j)\) 这个点的状态翻转两次然后不会改变)

问最后使得 \(A\) 中恰好有 \(S\) 个宫格被染黑的方案数。

\(1 \le n, m, k \le 3000\)

题解

思路很简单,首先我们考虑最后如果有 \(a\) 行被染了奇数次, \(b\) 列被染了奇数次,那么最后被染黑(变成 \(1\) )的格子数就是 \(a * m + b * n - 2 * a * b\)

我们可以暴力枚举 \(a, b\) 然后判断它得到面积是否为 \(S\)

然后我们就要考虑计算一个数,表示 \(k\) 次操作后,恰好有 \(a\) 行且 \(b\) 列被染黑的方案数。

我们很容易发现行和列的方案是互不影响的,然后我们可以考虑计算 \(k\) 次操作后,恰好有 \(a\) 行是染黑的方案数。

这个很显然可以用一个 \(dp\) 来计算,令 \(f_{i, j}\) 表示第 \(i\) 次操作后,恰好有 \(j\) 行染黑的方案数。

\[f_{i,j} = f_{i - 1, j - 1}\times (n - j + 1) + f_{i - 1,j + 1} \times(j + 1) \]

这个转移意义十分的显然(就是忽略每行的区别,直接计算有几种方案使得它发生变化)

对与列的 \(dp\) 也是一样的。 然后就能很轻松的做完啦qwq

复杂度是 \(O(k(n + m) + nm)\) 的。

总结

忽略一些表面上的区别,把本质相同的当做一个状态去转移就行了。

后记

我总认为这个题可以把 \(n, m, k\) 出到 \(10^5\) 乃至 \(10^6\)

对于 \(a, b\) 的枚举,我们可以单枚举一个,然后快速算出另外一个。(因为是一次函数,所以一一对应)

然后瓶颈就在求那个每行的方案数上了。

那个应该可以用生成函数等高端计数技巧来进行优化,目前我还没有找出规律qwq

其实可以用线性代数魔法优化到 \(O(n \log n \log k)\) ,就是特征多项式用 \(NTT\) 转移即可。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)

using namespace std;

typedef long long ll;

inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}

inline int read() {
	int x = 0, fh = 1; char ch = getchar();
	for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
	for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
	return x * fh;
}

const int N = 3e3 + 1e2, Mod = 1e9 + 7;

void File() {
#ifdef zjp_shadow
	freopen ("binary-flips.in", "r", stdin);
	freopen ("binary-flips.out", "w", stdout);
#endif
}

ll dpn[N][N], dpm[N][N];

int main () {

	File();

	for (int cases = read(); cases; -- cases) {

		int n = read(), m = read(), k = read(), s = read();

		dpn[0][0] = 1;
		For (i, 1, k) { 
			For (j, 1, i)
				dpn[i][j] = (dpn[i - 1][j + 1] * (j + 1) + dpn[i - 1][j - 1] * (n - j + 1)) % Mod;
			dpn[i][0] = dpn[i - 1][1];
		}

		dpm[0][0] = 1;
		For (i, 1, k) { 
			For (j, 1, i) 
                dpm[i][j] = (dpm[i - 1][j + 1] * (j + 1) + dpm[i - 1][j - 1] * (m - j + 1)) % Mod;
			dpm[i][0] = dpm[i - 1][1];
		}

		int ans = 0;
		For (a, 0, k) if ((k & 1) == (a & 1)) For (b, 0, k) if ((k & 1) == (b & 1) && a * m + b * n - 2 * a * b == s) {
			ans = (ans + dpn[k][a] * dpm[k][b]) % Mod;
		}
		printf ("%d\n", ans);

 }

	return 0;
}
posted @ 2018-09-13 15:31  zjp_shadow  阅读(231)  评论(2编辑  收藏  举报