kubernetes部署EFK(k8s)
Kubernetes 中比较流行的日志收集解决方案是 Elasticsearch
、Fluentd
和 Kibana
(EFK)技术栈,也是官方现在比较推荐的一种方案。
Elasticsearch
是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。
Elasticsearch 通常与 Kibana
一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。
Fluentd
是一个流行的开源数据收集器,我们将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。
我们先来配置启动一个可扩展的 Elasticsearch 集群,然后在 Kubernetes 集群中创建一个 Kibana 应用,最后通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。
1、创建 Elasticsearch 集群
在创建 Elasticsearch 集群之前,我们先创建一个命名空间,我们将在其中安装所有日志相关的资源对象。
新建一个 kube-logging.yaml 文件
vim kube-logging.yaml
apiVersion: v1
kind: Namespace
metadata:
name: logging
$ kubectl create -f kube-logging.yaml namespace/logging created $ kubectl get ns NAME STATUS AGE default Active 244d istio-system Active 100d kube-ops Active 179d kube-public Active 244d kube-system Active 244d logging Active 4h monitoring Active 35d
现在创建了一个命名空间来存放我们的日志相关资源,接下来可以部署 EFK 相关组件,首先开始部署一个3节点的 Elasticsearch 集群。
一个关键点是我们应该设置参数discover.zen.minimum_master_nodes=N/2+1
,其中N
是 Elasticsearch 集群中符合主节点的节点数,比如我们这里3个节点,意味着N
应该设置为2。这样,如果一个节点暂时与集群断开连接,则另外两个节点可以选择一个新的主节点,并且集群可以在最后一个节点尝试重新加入时继续运行,在扩展 Elasticsearch 集群时,一定要记住这个参数。
首先创建一个名为 elasticsearch 的无头服务,新建文件 elasticsearch-svc.yaml,文件内容如下
kind: Service apiVersion: v1 metadata: name: elasticsearch namespace: logging labels: app: elasticsearch spec: selector: app: elasticsearch clusterIP: None ports: - port: 9200 name: rest - port: 9300 name: inter-node $ kubectl create -f elasticsearch-svc.yaml service/elasticsearch created $ kubectl get services --namespace=logging Output NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE elasticsearch ClusterIP None <none> 9200/TCP,9300/TCP 26s
定义了一个名为 elasticsearch 的 Service,指定标签 app=elasticsearch
,当我们将 Elasticsearch StatefulSet 与此服务关联时,服务将返回带有标签 app=elasticsearch
的 Elasticsearch Pods 的 DNS A 记录,然后设置 clusterIP=None
,将该服务设置成无头服务。最后,我们分别定义端口9200、9300,分别用于与 REST API 交互,以及用于节点间通信。
现在我们已经为 Pod 设置了无头服务和一个稳定的域名.elasticsearch.logging.svc.cluster.local
,接下来我们通过 StatefulSet 来创建具体的 Elasticsearch 的 Pod 应用。
Kubernetes StatefulSet 允许我们为 Pod 分配一个稳定的标识和持久化存储,Elasticsearch 需要稳定的存储来保证 Pod 在重新调度或者重启后的数据依然不变,所以需要使用 StatefulSet 来管理 Pod。
新建名为 elasticsearch-statefulset.yaml 的资源清单文件,首先粘贴下面内容:
apiVersion: apps/v1 kind: StatefulSet metadata: name: es namespace: logging spec: serviceName: elasticsearch replicas: 3 selector: matchLabels: app: elasticsearch template: metadata: labels: app: elasticsearch spec: nodeSelector: es: log initContainers: - name: increase-vm-max-map image: busybox command: ["sysctl", "-w", "vm.max_map_count=262144"] securityContext: privileged: true - name: increase-fd-ulimit image: busybox command: ["sh", "-c", "ulimit -n 65536"] securityContext: privileged: true containers: - name: elasticsearch image: docker.elastic.co/elasticsearch/elasticsearch:7.6.2 ports: - name: rest containerPort: 9200 - name: inter containerPort: 9300 resources: limits: cpu: 1000m requests: cpu: 1000m volumeMounts: - name: data mountPath: /usr/share/elasticsearch/data env: - name: cluster.name value: k8s-logs - name: node.name valueFrom: fieldRef: fieldPath: metadata.name - name: cluster.initial_master_nodes value: "es-0,es-1,es-2" - name: discovery.zen.minimum_master_nodes value: "2" - name: discovery.seed_hosts value: "elasticsearch" - name: ES_JAVA_OPTS value: "-Xms512m -Xmx512m" - name: network.host value: "0.0.0.0" volumeClaimTemplates: - metadata: name: data labels: app: elasticsearch spec: accessModes: [ "ReadWriteOnce" ] storageClassName: rook-ceph-block resources: requests: storage: 50Gi $ kubectl create -f elasticsearch-statefulset.yaml statefulset.apps/es created $ kubectl get sts -n logging NAME READY AGE es 3/3 83m $ kubectl get pods -n logging NAME READY STATUS RESTARTS AGE es-0 1/1 Running 0 83m es-1 1/1 Running 0 82m es-2 1/1 Running 0 81m $ kubectl get svc -n logging NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE elasticsearch ClusterIP None <none> 9200/TCP,9300/TCP 20h
该部分是定义 StatefulSet 中的 Pod,暴露了9200和9300两个端口,注意名称要和上面定义的 Service 保持一致。然后通过 volumeMount 声明了数据持久化目录,下面我们再来定义 VolumeClaims。最后就是我们在容器中设置的一些环境变量了:
- cluster.name:Elasticsearch 集群的名称,我们这里命名成 k8s-logs。
- node.name:节点的名称,通过
metadata.name
来获取。这将解析为 es-[0,1,2],取决于节点的指定顺序。 - discovery.seed_hosts:此字段用于设置在 Elasticsearch 集群中节点相互连接的发现方法。由于我们之前配置的无头服务,我们的 Pod 具有唯一的 DNS 域
es-[0,1,2].elasticsearch.logging.svc.cluster.local
,因此我们相应地设置此变量。要了解有关 Elasticsearch 发现的更多信息,请参阅 Elasticsearch 官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery.html。 - discovery.zen.minimum_master_nodes:我们将其设置为
(N/2) + 1
,N
是我们的群集中符合主节点的节点的数量。我们有3个 Elasticsearch 节点,因此我们将此值设置为2(向下舍入到最接近的整数)。要了解有关此参数的更多信息,请参阅官方 Elasticsearch 文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain。 - ES_JAVA_OPTS:这里我们设置为
-Xms512m -Xmx512m
,告诉JVM
使用512 MB
的最小和最大堆。您应该根据群集的资源可用性和需求调整这些参数。要了解更多信息,请参阅设置堆大小的相关文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html。
这里我们定义了几个在主应用程序之前运行的 Init 容器,这些初始容器按照定义的顺序依次执行,执行完成后才会启动主应用容器。
第一个名为 increase-vm-max-map 的容器用来增加操作系统对mmap
计数的限制,默认情况下该值可能太低,导致内存不足的错误,要了解更多关于该设置的信息,可以查看 Elasticsearch 官方文档说明:https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html。
最后一个初始化容器是用来执行ulimit
命令增加打开文件描述符的最大数量的。
此外 Elastisearch Notes for Production Use 文档还提到了由于性能原因最好禁用 swap,当然对于 Kubernetes 集群而言,最好也是禁用 swap 分区的。
我们这里使用 volumeClaimTemplates 来定义持久化模板,Kubernetes 会使用它为 Pod 创建 PersistentVolume,设置访问模式为ReadWriteOnce
,这意味着它只能被 mount 到单个节点上进行读写,然后最重要的是使用了一个 StorageClass 对象,这里我们就直接使用前面创建的 NFS 类型 的 StorageClass 对象即可。最后,我们指定了每个 PersistentVolume 的大小为 50GB,我们可以根据自己的实际需要进行调整该值。
Pods 部署完成后,我们可以通过请求一个 REST API 来检查 Elasticsearch 集群是否正常运行。使用下面的命令将本地端口9200 转发到 Elasticsearch 节点(如es-0)对应的端口:
$ kubectl port-forward es-0 9200:9200 --namespace=logging Forwarding from 127.0.0.1:9200 -> 9200 Forwarding from [::1]:9200 -> 9200
#然后,在另外的终端窗口中,执行如下请求:
curl http://localhost:9200/_cluster/state?pretty
#当然也可不用这个方式直接进入到容器内执行
看到上面的信息就表明我们名为 k8s-logs 的 Elasticsearch 集群成功创建了3个节点:es-0,es-1,和es-2,当前主节点是 es-0。
2、创建 Kibana 服务
Elasticsearch 集群启动成功了,接下来我们可以来部署 Kibana 服务,新建一个名为 kibana.yaml 的文件,对应的文件内容如下:
apiVersion: v1 kind: Service metadata: name: kibana namespace: logging labels: app: kibana spec: ports: - port: 5601 type: NodePort selector: app: kibana --- apiVersion: apps/v1 kind: Deployment metadata: name: kibana namespace: logging labels: app: kibana spec: selector: matchLabels: app: kibana template: metadata: labels: app: kibana spec: nodeSelector: es: log containers: - name: kibana image: docker.elastic.co/kibana/kibana:7.6.2 resources: limits: cpu: 1000m requests: cpu: 1000m env: - name: ELASTICSEARCH_HOSTS value: http://elasticsearch:9200 ports: - containerPort: 5601 $ kubectl create -f kibana.yaml service/kibana created deployment.apps/kibana created $ kubectl get pods --namespace=logging NAME READY STATUS RESTARTS AGE es-0 1/1 Running 0 85m es-1 1/1 Running 0 84m es-2 1/1 Running 0 83m kibana-5c565c47dd-xj4bd 1/1 Running 0 80m $ kubectl get svc -n logging NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE elasticsearch ClusterIP None <none> 9200/TCP,9300/TCP 3h22m kibana NodePort 10.111.223.99 <none> 5601:31139/TCP 3h20m
上面我们定义了两个资源对象,一个 Service 和 Deployment,为了测试方便,我们将 Service 设置为了 NodePort 类型,Kibana Pod 中配置都比较简单,唯一需要注意的是我们使用 ELASTICSEARCH_HOSTS
这个环境变量来设置Elasticsearch 集群的端点和端口,直接使用 Kubernetes DNS 即可,此端点对应服务名称为 elasticsearch,由于是一个 headless service,所以该域将解析为3个 Elasticsearch Pod 的 IP 地址列表。
如果 Pod 已经是 Running 状态了,证明应用已经部署成功了,然后可以通过 NodePort 来访问 Kibana 这个服务,在浏览器中打开http://<任意节点IP>:31139
即可,如有部署了ingress-control也可以通过 部署ingress进行访问。看到如下欢迎界面证明 Kibana 已经成功部署到了 Kubernetes集群之中。
3、部署 Fluentd
Fluentd
是一个高效的日志聚合器,是用 Ruby 编写的,并且可以很好地扩展。对于大部分企业来说,Fluentd 足够高效并且消耗的资源相对较少,另外一个工具Fluent-bit
更轻量级,占用资源更少,但是插件相对 Fluentd 来说不够丰富,所以整体来说,Fluentd 更加成熟,使用更加广泛,所以我们这里也同样使用 Fluentd 来作为日志收集工具。
工作原理
Fluentd 通过一组给定的数据源抓取日志数据,处理后(转换成结构化的数据格式)将它们转发给其他服务,比如 Elasticsearch、对象存储等等。Fluentd 支持超过300个日志存储和分析服务,所以在这方面是非常灵活的。主要运行步骤如下:
- 首先 Fluentd 从多个日志源获取数据
- 结构化并且标记这些数据
- 然后根据匹配的标签将数据发送到多个目标服务去
配置
一般来说我们是通过一个配置文件来告诉 Fluentd 如何采集、处理数据的,下面简单和大家介绍下 Fluentd 的配置方法。
日志源配置
比如我们这里为了收集 Kubernetes 节点上的所有容器日志,就需要做如下的日志源配置
<source> @id fluentd-containers.log @type tail # Fluentd 内置的输入方式,其原理是不停地从源文件中获取新的日志。 path /var/log/containers/*.log # 挂载的服务器Docker容器日志地址 pos_file /var/log/es-containers.log.pos tag raw.kubernetes.* # 设置日志标签 read_from_head true <parse> # 多行格式化成JSON @type multi_format # 使用 multi-format-parser 解析器插件 <pattern> format json # JSON 解析器 time_key time # 指定事件时间的时间字段 time_format %Y-%m-%dT%H:%M:%S.%NZ # 时间格式 </pattern> <pattern> format /^(?<time>.+) (?<stream>stdout|stderr) [^ ]* (?<log>.*)$/ time_format %Y-%m-%dT%H:%M:%S.%N%:z </pattern> </parse> </source>
上面配置部分参数说明如下:
- id:表示引用该日志源的唯一标识符,该标识可用于进一步过滤和路由结构化日志数据
- type:Fluentd 内置的指令,
tail
表示 Fluentd 从上次读取的位置通过 tail 不断获取数据,另外一个是http
表示通过一个 GET 请求来收集数据。 - path:
tail
类型下的特定参数,告诉 Fluentd 采集/var/log/containers
目录下的所有日志,这是 docker 在 Kubernetes 节点上用来存储运行容器 stdout 输出日志数据的目录。 - pos_file:检查点,如果 Fluentd 程序重新启动了,它将使用此文件中的位置来恢复日志数据收集。
- tag:用来将日志源与目标或者过滤器匹配的自定义字符串,Fluentd 匹配源/目标标签来路由日志数据。
路由配置
上面是日志源的配置,接下来看看如何将日志数据发送到 Elasticsearch:
<match **> @id elasticsearch @type elasticsearch @log_level info include_tag_key true type_name fluentd host "#{ENV['OUTPUT_HOST']}" port "#{ENV['OUTPUT_PORT']}" logstash_format true <buffer> @type file path /var/log/fluentd-buffers/kubernetes.system.buffer flush_mode interval retry_type exponential_backoff flush_thread_count 2 flush_interval 5s retry_forever retry_max_interval 30 chunk_limit_size "#{ENV['OUTPUT_BUFFER_CHUNK_LIMIT']}" queue_limit_length "#{ENV['OUTPUT_BUFFER_QUEUE_LIMIT']}" overflow_action block </buffer>
- match:标识一个目标标签,后面是一个匹配日志源的正则表达式,我们这里想要捕获所有的日志并将它们发送给 Elasticsearch,所以需要配置成
**
。 - id:目标的一个唯一标识符。
- type:支持的输出插件标识符,我们这里要输出到 Elasticsearch,所以配置成 elasticsearch,这是 Fluentd 的一个内置插件。
- log_level:指定要捕获的日志级别,我们这里配置成
info
,表示任何该级别或者该级别以上(INFO、WARNING、ERROR)的日志都将被路由到 Elsasticsearch。 - host/port:定义 Elasticsearch 的地址,也可以配置认证信息,我们的 Elasticsearch 不需要认证,所以这里直接指定 host 和 port 即可。
- logstash_format:Elasticsearch 服务对日志数据构建反向索引进行搜索,将 logstash_format 设置为
true
,Fluentd 将会以 logstash 格式来转发结构化的日志数据。 - Buffer: Fluentd 允许在目标不可用时进行缓存,比如,如果网络出现故障或者 Elasticsearch 不可用的时候。缓冲区配置也有助于降低磁盘的 IO。
过滤
由于 Kubernetes 集群中应用太多,也还有很多历史数据,所以我们可以只将某些应用的日志进行收集,比如我们只采集具有 logging=true
这个 Label 标签的 Pod 日志,这个时候就需要使用 filter,如下所示:
# 删除无用的属性 <filter kubernetes.**> @type record_transformer remove_keys $.docker.container_id,$.kubernetes.container_image_id,$.kubernetes.pod_id,$.kubernetes.namespace_id,$.kubernetes.master_url,$.kubernetes.labels.pod-template-hash </filter> # 只保留具有logging=true标签的Pod日志 <filter kubernetes.**> @id filter_log @type grep <regexp> key $.kubernetes.labels.logging pattern ^true$ </regexp> </filter>
安装
要收集 Kubernetes 集群的日志,直接用 DasemonSet 控制器来部署 Fluentd 应用,这样,它就可以从 Kubernetes 节点上采集日志,确保在集群中的每个节点上始终运行一个 Fluentd 容器。当然可以直接使用 Helm 来进行一键安装,为了能够了解更多实现细节,我们这里还是采用手动方法来进行安装。
首先,我们通过 ConfigMap 对象来指定 Fluentd 配置文件,新建 fluentd-configmap.yaml 文件,文件内容如下:
kind: ConfigMap apiVersion: v1 metadata: name: fluentd-config namespace: logging data: system.conf: |- <system> root_dir /tmp/fluentd-buffers/ </system> containers.input.conf: |- <source> @id fluentd-containers.log @type tail # Fluentd 内置的输入方式,其原理是不停地从源文件中获取新的日志。 path /var/log/containers/*.log # 挂载的服务器Docker容器日志地址 pos_file /var/log/es-containers.log.pos tag raw.kubernetes.* # 设置日志标签 read_from_head true <parse> # 多行格式化成JSON @type multi_format # 使用 multi-format-parser 解析器插件 <pattern> format json # JSON解析器 time_key time # 指定事件时间的时间字段 time_format %Y-%m-%dT%H:%M:%S.%NZ # 时间格式 </pattern> <pattern> format /^(?<time>.+) (?<stream>stdout|stderr) [^ ]* (?<log>.*)$/ time_format %Y-%m-%dT%H:%M:%S.%N%:z </pattern> </parse> </source> # 在日志输出中检测异常,并将其作为一条日志转发 # https://github.com/GoogleCloudPlatform/fluent-plugin-detect-exceptions <match raw.kubernetes.**> # 匹配tag为raw.kubernetes.**日志信息 @id raw.kubernetes @type detect_exceptions # 使用detect-exceptions插件处理异常栈信息 remove_tag_prefix raw # 移除 raw 前缀 message log stream stream multiline_flush_interval 5 max_bytes 500000 max_lines 1000 </match> <filter **> # 拼接日志 @id filter_concat @type concat # Fluentd Filter 插件,用于连接多个事件中分隔的多行日志。 key message multiline_end_regexp /\n$/ # 以换行符“\n”拼接 separator "" </filter> # 添加 Kubernetes metadata 数据 <filter kubernetes.**> @id filter_kubernetes_metadata @type kubernetes_metadata </filter> # 修复 ES 中的 JSON 字段 # 插件地址:https://github.com/repeatedly/fluent-plugin-multi-format-parser <filter kubernetes.**> @id filter_parser @type parser # multi-format-parser多格式解析器插件 key_name log # 在要解析的记录中指定字段名称。 reserve_data true # 在解析结果中保留原始键值对。 remove_key_name_field true # key_name 解析成功后删除字段。 <parse> @type multi_format <pattern> format json </pattern> <pattern> format none </pattern> </parse> </filter> # 删除一些多余的属性 <filter kubernetes.**> @type record_transformer remove_keys $.docker.container_id,$.kubernetes.container_image_id,$.kubernetes.pod_id,$.kubernetes.namespace_id,$.kubernetes.master_url,$.kubernetes.labels.pod-template-hash </filter> # 只保留具有logging=true标签的Pod日志 <filter kubernetes.**> @id filter_log @type grep <regexp> key $.kubernetes.labels.logging pattern ^true$ </regexp> </filter> ###### 监听配置,一般用于日志聚合用 ###### forward.input.conf: |- # 监听通过TCP发送的消息 <source> @id forward @type forward </source> output.conf: |- <match **> @id elasticsearch @type elasticsearch @log_level info include_tag_key true host elasticsearch port 9200 logstash_format true logstash_prefix k8s # 设置 index 前缀为 k8s request_timeout 30s <buffer> @type file path /var/log/fluentd-buffers/kubernetes.system.buffer flush_mode interval retry_type exponential_backoff flush_thread_count 2 flush_interval 5s retry_forever retry_max_interval 30 chunk_limit_size 2M queue_limit_length 8 overflow_action block </buffer> </match>
上面配置文件中我们只配置了 docker 容器日志目录,收集到数据经过处理后发送到 elasticsearch:9200
服务。
然后新建一个 fluentd-daemonset.yaml 的文件,文件内容如下:
apiVersion: v1 kind: ServiceAccount metadata: name: fluentd-es namespace: logging labels: k8s-app: fluentd-es kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile --- kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: fluentd-es labels: k8s-app: fluentd-es kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile rules: - apiGroups: - "" resources: - "namespaces" - "pods" verbs: - "get" - "watch" - "list" --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: fluentd-es labels: k8s-app: fluentd-es kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile subjects: - kind: ServiceAccount name: fluentd-es namespace: logging apiGroup: "" roleRef: kind: ClusterRole name: fluentd-es apiGroup: "" --- apiVersion: apps/v1 kind: DaemonSet metadata: name: fluentd-es namespace: logging labels: k8s-app: fluentd-es kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile spec: selector: matchLabels: k8s-app: fluentd-es template: metadata: labels: k8s-app: fluentd-es kubernetes.io/cluster-service: "true" # 此注释确保如果节点被驱逐,fluentd不会被驱逐,支持关键的基于 pod 注释的优先级方案。 annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: serviceAccountName: fluentd-es containers: - name: fluentd-es image: quay.io/fluentd_elasticsearch/fluentd:v3.0.1 env: - name: FLUENTD_ARGS value: --no-supervisor -q resources: limits: memory: 500Mi requests: cpu: 100m memory: 200Mi volumeMounts: - name: varlog mountPath: /var/log - name: varlibdockercontainers mountPath: /data/docker/containers readOnly: true - name: config-volume mountPath: /etc/fluent/config.d nodeSelector: beta.kubernetes.io/fluentd-ds-ready: "true" tolerations: - operator: Exists terminationGracePeriodSeconds: 30 volumes: - name: varlog hostPath: path: /var/log - name: varlibdockercontainers hostPath: path: /data/docker/containers - name: config-volume configMap: name: fluentd-config
我们将上面创建的 fluentd-config 这个 ConfigMap 对象通过 volumes 挂载到了 Fluentd 容器中,另外为了能够灵活控制哪些节点的日志可以被收集,所以我们这里还添加了一个 nodSelector 属性:
nodeSelector: beta.kubernetes.io/fluentd-ds-ready: "true"
意思就是要想采集节点的日志,那么我们就需要给节点打上上面的标签,比如我们这里只给节点4和节点6打上了该标签:
如果你需要在其他节点上采集日志,则需要给对应节点打上标签,使用如下命令:kubectl label nodes node名 beta.kubernetes.io/fluentd-ds-ready=true
。
另外由于我们的集群使用的是 kubeadm 搭建的,默认情况下 master 节点有污点,所以如果要想也收集 master 节点的日志,则需要添加上容忍:
tolerations: - operator: Exists
ds的yaml文件要改
$ kubectl create -f fluentd-configmap.yaml configmap "fluentd-config" created $ kubectl create -f fluentd-daemonset.yaml serviceaccount "fluentd-es" created clusterrole.rbac.authorization.k8s.io "fluentd-es" created clusterrolebinding.rbac.authorization.k8s.io "fluentd-es" created daemonset.apps "fluentd-es" created
Fluentd 启动成功后,这个时候就可以发送日志到 ES 了,但是我们这里是过滤了只采集具有 logging=true
标签的 Pod 日志,所以现在还没有任何数据会被采集。
下面我们部署一个简单的测试应用, 新建 counter.yaml 文件,文件内容如下:
$ kubectl create -f counter.yaml $ kubectl get pods NAME READY STATUS RESTARTS AGE counter 1/1 Running 0 9h
Pod 创建并运行后,回到 Kibana Dashboard 页面,点击左侧最下面的 management
图标,然后点击 Kibana 下面的 Index Patterns
开始导入索引数据:
curl -s "127.0.0.1:9200/_cat/indices?v"
查看索引是否存在
至此我们就成功部署了EFK来收集k8s集群的日志。