Image Retrieval: Ideas, Influences, and Trends of the New Age

摘要:本文考察了最近十年来与image retrieval和automatic image annotation领域取得的成就,并且讨论了相关子领域的研究进展。我们讨论了现有image retrieval技术应用的难点,并指出未来image retrieval研究发展的方向。

1 INTRODUCTION

    Image retrieval的研究领域如下图:

    本文组织展开如下:1.1节介绍早期的研究成果;2节讨论了一个real-world image retrieval系统需要考虑的因素;3节介绍了近十年取得的一些重大成就;4节介绍了CBIR (content-based image retrieval)研究带来的新问题;5节讨论了image retrieval system 评价方法。

2 IMAGE RETRIEVAL IN THE REAL-WORLD

2.1 User Intent

2.2 Data Scope

2.3 Query Modalities and Processing

2.4 Visualization

2.5 Real-world Image Retrieval Systems

3 IMAGE RETRIEVAL TECHNIQUES: ADDRESSING THE CORE PROBLEM

3.1 Extraction of Visual Signature

    特征提取(feature extraction)是CBIR系统的预处理步骤。提取的图像特征为后续操作相似度估计(similarity estimation),概念检测(concept detection),标注(annotation)提供输入。

    特征提取过程如图6。近十年来区域特征提取(region-based visual signature)受到关注。我们将讨论区域特征检测的第一步操作图像分割技术(image segmentation),然而我们还将发现segmentation-free技术越来越受到关注。

A 图像分割(image Segmentation)

    图像分割是获得局部签名(region-based signature)的关键,特别是以形状为特征时。(1)k-means聚类,速度快(2)归一化划分准则(Normalized Cuts criterion),将图像分割问题转化为带权图的分割问题。这一准则又扩展到纹理图像(textured image)的分割。

    医学图像搜索逐步兴起。(1)采用HMM和EM:3D脑MR图像(2)光谱聚类(spectral clustering):脊椎MR图像(3)均值漂移(mean shift)。。。。各种分割方法。

    图像分割中的一些问题:计算复杂度(computational complexity)、分割可靠性(reliability of good segmentation)、分割质量评价方法(segmentation quality assessment methods)。介绍了一些不依赖分割质量(reduce dependence on reliable segmentation)的特征提取方法。

B 特征类型(Major Types of Features)

    特征用来表示一副特定图像的特性。全局特征(global feature)通常过于精确而鲁棒性较差,因此提出了局部提取(local extraction)和签名合成的方法(signature summarization)。

    局部特征提取由每一个像素邻域(neighborhood)计算得到。为了减少计算复杂度,图像被划分为不重叠(non-overlapping)的子块。全局描述(global description)可由多种方法得到,最普通的方法就是得到特征向量的分布。

    颜色特征(color feature):CBIR发展早起就较为流行,近年来偏向图像颜色的summarization和构建签名上。MPEG-7标准。

    纹理特征(texture feature):图片的颗粒度(granularity)和重复的周期性图样(repetitive pattern)。由于纹理特征更贴近语义理解,因此在航线图样、医学成像这些领域的image retrieval中至关重要。接下来是texture feature的一些研究进展。

形状特征(shape feature):主要包括两个问题,即形状的表示和形状相似性。

与之紧密相关的是在本地图片中建立空间联系的方法。空间索引和匹配的

C 签名建立(Construction of Signatures from Features)

D 自适应图像签名(Adaptive Image Signature)

   

   

   

   

   

   

   

   

  

posted on 2013-04-07 22:20  zjgtan  阅读(757)  评论(0编辑  收藏  举报

导航