在win7下的eclipse中实现wordcount以及cascading-wordcount

准备:由于是在win7下的eclipse中运行hadoop程序,我们需要一些能在win7下运行的插件,

      1,见上篇博客,我们搭建好hadoop HA机制的集群后,将三台虚拟机均开启,所需进程也开启(见上篇博客)

      2,在wind7下的某个文件夹下保存hadoop-2.4.1的文件夹,该文件夹里的内容和centos上搭建的hadoop集群的内容一模一样,我保存在F:\download里面

      3,在官网下载eclipse软件,我用的是eclipse-jee-kepler-SR2-win32-x86_64,将其解压放在E:\soft\eclipse-jee-kepler-SR2-win32-x86_64

      4,我们需要在eclipse解压包里的E:\soft\eclipse-jee-kepler-SR2-win32-x86_64\eclipse\plugins路径下存放关于eclipse连接hadoop的插件,该插件官网是没有的,需要自己用源码来编译,我是在网上下载的别人的,即hadoop-2.4.1-eclipse-4.4-plugin.jar将其放在上述目录中,这样在重启eclipse的时候

点击菜单栏 windows->preferences会出现Haddop Map/Reduce,点击它,将目录指向我们之前存好的hadoop-2.4.1文件夹,我的为F:\downloads\hadoop-2.4.1

      5,经过上述步骤后我们可以连接我们的hadoop集群,在加载一 些需要的jar包之后,我们运行hadoop的wordcount程序是会报错的,原因的我们并没有在win7下配置hadoop的环境变量,并且在hadoop-2.4.1de bin包下还缺少一些文件,hadoop.dll文件和winutils.exe文件,它们是hadoop程序能在wind7下的必要文件,官网下载的hadoop-2.4.1.tar.gz文件中是没有的,这两个文件也需要我们自己编译,所以说编译很重要,声明,这两个文件的下载可以是2.4.1版本以上的,低于2.4.1版本的这两个文件

放到hadoop-2.4.1的bin目录下也会报错

     6,将以上配置好后,我们还需要将hadoop.dll文件在win7下的C:\Windows\System32目录下也放一份,同时在win7的环境变量中配置

HADOOP_HOM=F:\downloads\hadoop-2.4.1,同时将 %HADOOP_HOME%\bin放入环境变量Path中

     7,经过上述步骤,基本上是可以实现在win7下的eclipse中完完全全运行hadoop程序,声明在运行程序前,比如运行cascading-wordcount前,我们需要将cascading包中的jar文件放到我们当前的map/reduce应用下,core-site.xml,hdfs-site.xml以及log4j.properties需要到当前应用的src下

 

一,运行wordcount程序

worcount程序有三个类如下,我们以hadoop的方式运行第三个类

上源码:

 

/**
 * Mapper类读取输出并且执行map函数,编写Mapper类必须继承org.apache.hadoop.mapreduce.Mapper类,并且根据相应的逻辑实现map函数,
   Mapreduce计算框架会将键值对作为参数传递给map函数
 */
//LongWritable代表行号,Text代表该行的内容,Text代表中间输出结果的关键词,IntWritable代表中间输出结果关键词出现的次数
public class TokenizerMapper extends Mapper<LongWritable, Text, Text,IntWritable > {

    private final static IntWritable  one =  new IntWritable(1);//用来计算关键词在这行文本里出现的次数
    private Text word = new Text();
    
    public void map(LongWritable ikey, Text ivalue, Context context)
            throws IOException, InterruptedException {
        
        String line = ivalue.toString();//获取文本所有的行
        //StringTokenizer类的nextToken()方法将每行文本拆分为单个单词
        StringTokenizer itr = new StringTokenizer(line);//获取文本所有的行
        while(itr.hasMoreTokens())//遍历每行的文本
        {
            word.set(itr.nextToken());//每行文本拆分为单个单词
            context.write(word, one);//将其作为中间结果进行输出,word代表关键词,one代表关键词在这行出现的次数
        }
    }
public class IntSumReducer extends Reducer<Text, IntWritable, Text,IntWritable> {
   /**
    * Reducer接收到Mapper输出的中间结果并执行reduce函数,reduce函数接收到的参数形如<key,List<value>>,
    * 这是因为map函数将key值相同的所有value都发送给reduce函数,在reduce函数中,完成对相同key值得计数并将最后结果输出
    * Reduce类的泛型代表了reduce函数输入键值对的键的类,以及值得类,输出键值对键的类以及值的类
    */
    private IntWritable result = new  IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values, Context context)
            throws IOException, InterruptedException {
        // process values
        int sum = 0;
        
        for (IntWritable val : values) {
            sum = sum + val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}
public class WordCount {
    public static void main(String args[]) throws IOException, ClassNotFoundException, InterruptedException{
        Configuration conf = new Configuration();
        if(args.length!=2){
            System.err.println("Usage:wordcount <in> <out>");
            System.exit(2);}        
        @SuppressWarnings("deprecation")
        Job job = new Job(conf,"word count");
        job.setJarByClass(WordCount.class);
        //set  Mapped class
        job.setMapperClass(TokenizerMapper.class);
        // set Reducer class
        job.setReducerClass(IntSumReducer.class);
        //set reduce function output key class
        job.setOutputKeyClass(Text.class);
        //set reduce function output value class
        job.setOutputValueClass(IntWritable.class);
        //set input path
        FileInputFormat.addInputPath(job, new Path(args[0]));
        //set output path
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //submit job
        System.exit(job.waitForCompletion(true)?0:1);
    }

hdfs的目录树下/user/output/下会多出一个文件夹result2,里面就包含每个单词出现的个数的文件

二,cascading-wordcount的运行

它和之前在centos的eclipse中运行有些不一样,不一样在于地址,不说了先上源码,源码上有解析

package com.zjf.cascading.example;

/*
 * WordCount example
 * zjf-pc
 * Copyright (c) 2007-2012 Concurrent, Inc. All Rights Reserved.
 * Project and contact information: http://www.concurrentinc.com/
 */

import java.util.Map;
import java.util.Properties;

import cascading.cascade.Cascade;
import cascading.cascade.CascadeConnector;
import cascading.cascade.Cascades;
import cascading.flow.Flow;
import cascading.flow.FlowConnector;
import cascading.operation.Identity;
import cascading.operation.aggregator.Count;
import cascading.operation.regex.RegexFilter;
import cascading.operation.regex.RegexGenerator;
import cascading.operation.regex.RegexReplace;
import cascading.operation.regex.RegexSplitter;
import cascading.operation.xml.TagSoupParser;
import cascading.operation.xml.XPathGenerator;
import cascading.operation.xml.XPathOperation;
import cascading.pipe.Each;
import cascading.pipe.Every;
import cascading.pipe.GroupBy;
import cascading.pipe.Pipe;
import cascading.pipe.SubAssembly;
import cascading.scheme.SequenceFile;
import cascading.scheme.TextLine;
import cascading.tap.Tap;
import cascading.tap.Hfs;
import cascading.tap.Lfs;
import cascading.tuple.Fields;

public class WordCount
  {
  @SuppressWarnings("serial")
private static class ImportCrawlDataAssembly extends SubAssembly
    {
    public ImportCrawlDataAssembly( String name )
      {
      //拆分文本行到url和raw
      RegexSplitter regexSplitter = new RegexSplitter( new Fields( "url", "raw" ) );
      Pipe importPipe = new Each( name, new Fields( "line" ), regexSplitter );
      //删除所有pdf文档
      importPipe = new Each( importPipe, new Fields( "url" ), new RegexFilter( ".*\\.pdf$", true ) );
      //把":n1"替换为"\n",丢弃无用的字段
      RegexReplace regexReplace = new RegexReplace( new Fields( "page" ), ":nl:", "\n" );
      importPipe = new Each( importPipe, new Fields( "raw" ), regexReplace, new Fields( "url", "page" ) );
      //此句强制调用
      setTails( importPipe );
      }
    }

  @SuppressWarnings("serial")
private static class WordCountSplitAssembly extends SubAssembly
    {
    public WordCountSplitAssembly( String sourceName, String sinkUrlName, String sinkWordName )
      {
      //创建一个新的组件,计算所有页面中字数,和一个页面中的字数
      Pipe pipe = new Pipe(sourceName);
     //利用TagSoup将HTML转成XHTML,只保留"url"和"xml"去掉其它多余的
      pipe = new Each( pipe, new Fields( "page" ), new TagSoupParser( new Fields( "xml" ) ), new Fields( "url", "xml" ) );
      //对"xml"字段运用XPath(XML Path Language)表达式,提取"body"元素
      XPathGenerator bodyExtractor = new XPathGenerator( new Fields( "body" ), XPathOperation.NAMESPACE_XHTML, "//xhtml:body" );
      pipe = new Each( pipe, new Fields( "xml" ), bodyExtractor, new Fields( "url", "body" ) );
      //运用另一个XPath表达式删除所有元素,只保留文本节点,删除在"script"元素中的文本节点
      String elementXPath = "//text()[ name(parent::node()) != 'script']";
      XPathGenerator elementRemover = new XPathGenerator( new Fields( "words" ), XPathOperation.NAMESPACE_XHTML, elementXPath );
      pipe = new Each( pipe, new Fields( "body" ), elementRemover, new Fields( "url", "words" ) );
      //用正则表达式将文档打乱成一个个独立的单词,和填充每个单词(新元组)到当前流使用"url"和"word"字段
      RegexGenerator wordGenerator = new RegexGenerator( new Fields( "word" ), "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)" );
      pipe = new Each( pipe, new Fields( "words" ), wordGenerator, new Fields( "url", "word" ) );
      //按"url"分组
      Pipe urlCountPipe = new GroupBy( sinkUrlName, pipe, new Fields( "url", "word" ) );
      urlCountPipe = new Every( urlCountPipe, new Fields( "url", "word" ), new Count(), new Fields( "url", "word", "count" ) );
      //按"word"分组
      Pipe wordCountPipe = new GroupBy( sinkWordName, pipe, new Fields( "word" ) );
      wordCountPipe = new Every( wordCountPipe, new Fields( "word" ), new Count(), new Fields( "word", "count" ) );
      //此句强制调用
      setTails( urlCountPipe, wordCountPipe );
      }
    }

  public static void main( String[] args )
    {
      //设置当前工作jar
     Properties properties = new Properties(); 
     FlowConnector.setApplicationJarClass(properties, WordCount.class);
     FlowConnector flowConnector = new FlowConnector(properties);
     /**
      * 在运行设置的参数里设置如下代码:
      * 右击Main.java,选择run as>run confugrations>java application>Main>Agruments->Program arguments框内写入如下代码
      * E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt output local 
      * 分析:
      * args[0]代表E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt,它位于当前应用所在的目录下面,且路径必须是本地文件系统里的路径
      * 我的所在目录是E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt
      * 且该路径需要自己创建,url+page.200.txt文件也必须要有,可以在官网下下载
      * 
      * args[1]代表output文件夹,第二个参数,它位于分布式文件系统hdfs中
      * 我的路径是:hdfs://s104:9000/user/Adminstrator/output,该路径需要自己创建
      * 在程序运行成功后,output目录下会自动生成三个文件夹pages,urls,words
      * 里面分别包含所有的page,所有的url,所有的word
      * 
      * args[2]代表local,第三个参数,它位于本地文件系统中
      * 我的所在目录是E:/workspace/java-eclipse/hadoopApp001/local
      * 该文件夹不需要自己创建,在程序运行成功后会自动生成在我的上述目录中,
      * 且在该local文件夹下会自动生成两个文件夹urls和words,里面分别是url个数和word个数
      */
      String inputPath = args[ 0 ];
      String pagesPath = args[ 1 ] + "/pages/";
      String urlsPath = args[ 1 ] + "/urls/";
      String wordsPath = args[ 1 ] + "/words/";
      String localUrlsPath = args[ 2 ] + "/urls/";
      String localWordsPath = args[ 2 ] + "/words/";
      
    //初始化Pipe管道处理爬虫数据装配,返回字段url和page
    Pipe importPipe = new ImportCrawlDataAssembly( "import pipe" );

     //创建tap实例
    Tap localPagesSource = new Lfs( new TextLine(), inputPath );
    Tap importedPages = new Hfs( new SequenceFile( new Fields( "url", "page" ) ), pagesPath );

    //链接pipe装配到tap实例
    Flow importPagesFlow = flowConnector.connect( "import pages", localPagesSource, importedPages, importPipe );

    //拆分之前定义的wordcount管道到新的两个管道url和word
    // these pipes could be retrieved via the getTails() method and added to new pipe instances
    SubAssembly wordCountPipe = new WordCountSplitAssembly( "wordcount pipe", "url pipe", "word pipe" );

    //创建hadoop SequenceFile文件存储计数后的结果
    Tap sinkUrl = new Hfs( new SequenceFile( new Fields( "url", "word", "count" ) ), urlsPath );
    Tap sinkWord = new Hfs( new SequenceFile( new Fields( "word", "count" ) ), wordsPath );

    //绑定多个pipe和tap,此处指定的是pipe名称
    Map<String, Tap> sinks = Cascades.tapsMap( new String[]{"url pipe", "word pipe"}, Tap.taps( sinkUrl, sinkWord ) );
    //wordCountPipe指的是一个装配
    Flow count = flowConnector.connect( importedPages, sinks, wordCountPipe );

   //创建一个装配,导出hadoop sequenceFile 到本地文本文件
    Pipe exportPipe = new Each( "export pipe", new Identity() );
    Tap localSinkUrl = new Lfs( new TextLine(), localUrlsPath );
    Tap localSinkWord = new Lfs( new TextLine(), localWordsPath );

   // 使用上面的装配来连接两个sink
    Flow exportFromUrl = flowConnector.connect( "export url", sinkUrl, localSinkUrl, exportPipe );
    Flow exportFromWord = flowConnector.connect( "export word", sinkWord, localSinkWord, exportPipe );

    ////装载flow,顺序随意,并执行
    Cascade cascade = new CascadeConnector().connect( importPagesFlow, count, exportFromUrl, exportFromWord );
    cascade.complete();
    }
  }

运行时的截图如下:

运行完后,在、user/Adminstrator/output/下会多出三个文件夹,在本地的当前应用下会多出一个local的文件夹,这样就运行成功

 

posted on 2017-05-09 21:12  我想静静_zjf  阅读(199)  评论(0编辑  收藏  举报

导航