spring boot 整合kafka

本文为博主原创,未经允许不得转载:

  1. 引入spring boot kafka依赖

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>

  

  2.  application.yml配置如下:

  

spring:
  kafka:
    bootstrap-servers: 112.125.26.68:9092,112.125.26.68:9093,112.125.26.68:9094
    producer: # 生产者
      retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
      batch-size: 16384
      buffer-memory: 33554432
      acks: 1
      # 指定消息key和消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: default-group
      enable-auto-commit: false
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    listener:
      # 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
      # RECORD
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交
      # BATCH
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交
      # TIME
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交
      # COUNT
      # TIME | COUNT 有一个条件满足时提交
      # COUNT_TIME
      # 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交
      # MANUAL
      # 手动调用Acknowledgment.acknowledge()后立即提交,一般使用这种
      # MANUAL_IMMEDIATE
      ack-mode: manual_immediate

  

  3. 发送者代码:

  

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class KafkaController {

    private final static String TOPIC_NAME = "my-replicated-topic";

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @RequestMapping("/send")
    public void send() {
        kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a msg");
    }

}

 

  4. 消费者代码:

  

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;

@Component
public class MyConsumer {

    /**
     * @KafkaListener(groupId = "testGroup", topicPartitions = {
     *             @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
     *             @TopicPartition(topic = "topic2", partitions = "0",
     *                     partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
     *     },concurrency = "6")
     *  //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
     * @param record
     */
    @KafkaListener(topics = "my-replicated-topic",groupId = "zhugeGroup")
    public void listenZhugeGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
        String value = record.value();
        System.out.println(value);
        System.out.println(record);
        //手动提交offset
        ack.acknowledge();
    }

    /*//配置多个消费组
    @KafkaListener(topics = "my-replicated-topic",groupId = "tulingGroup")
    public void listenTulingGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
        String value = record.value();
        System.out.println(value);
        System.out.println(record);
        ack.acknowledge();
    }*/
}

 

posted @ 2021-07-17 18:24  香吧香  阅读(440)  评论(0编辑  收藏  举报