知识点篇:3.1)合理的不良率-机械工程师学会设计
本章目的:理解成本与合格率,设计师也要决定如何设计一个有合理错误率的产品。
1.前言
让一个机械工程师设计一个错误的产品,恐怕很多工程师都会难以接受。
作者想在本章讲述的理念,就是出于成本控制,让一个工程师设计出一个会出错的产品。
这并非是让工程师控制合理公差这么简单的事情。
如果以前的文章都是讲述如何设计一个正确的公差范围,那么这章作者就会讲述如何设计一个错误的公差范围。
这又涉及到设计理念的增长。
一个工程师会有三个阶段的设计成长。
①不小心就设计错误的结构;
②有自信能设计出正确的产品;
③能有依据去设计错误的产品;
作者在这一章节,就是在讲述第三个阶段,和第一个阶段是有本质区别的。
为了便于大家的理解,作者在这一个整个阶段,会用例子去描述整个理念。
2.例子与问题
先声明:这个例子是作者臆想的,和实际任何事物没有关系╮(╯▽╰)╭。
背景是这样的,
小明家开了一家科技电池公司,这个电池X只有一个宽度尺寸a,为1。如下图所示:
已知通过无数实验和实际证明可知。
当宽度a的实际制造值<0.9或>1.1的时候,电池在通电的情况下,会发生爆炸,威力和一个小型的鞭炮差不多。这是一个绝对的事件。
也就是说:
当0.9≤a≤1.1时,通电工作或不通电都是绝对安全的。
当a<0.9或a>1.1时,不通电的情况下是绝对安全的。
当a<0.9或a>1.1时,一通电就绝对爆炸。
但小明发现这个高科技电池其实不是那么好制作,所以他决定把这个电池X外包出去制造。
小明当时找到了唯一一家国外的有能力制造的供应商α,号称绝对有能力制造这个电池X,不论生产多少产品的合格率都是100%。但精度不同,价格也不一样。他们给出了一张价格和精度的表。
问:小明老板要你标注一张电池X的的图纸,a的尺寸你该标注多少?
再附加几个背景:
1)为什么a=1±0.1这一档变化这么大?因为工艺制造能力刚好卡在这里,所以这一档的价格变化这么大。
2)公司当时已经购入一台出厂产品检测设备,价值20万。采用流水线全检。
3.回答
3.1 答案1:标注0.9≤a≤1.1。
因为背景已经介绍很清楚了,当0.9≤a≤1.1时,通电工作或不通电都是绝对安全的。而尺寸范围超过这个数值,无疑会产生很多不良的后果。
所以标注0.9≤a≤1.1。
作者注:一般来说都会标注这个尺寸。
3.2 答案2:标注0.92≤a≤1.08。或更小范围的公差。
虽然背景已经介绍了当0.9≤a≤1.1时,通电工作或不通电都是绝对安全的。但不排除论外的情况,比如电池被哈士奇咬了一口,这时候通电的话,电池就会发生危险。为了降低这种风险,必须给出相应的裕度。(就是说哈士奇咬一口,公差也在会范围内)。
另外,使用电池的产品必须加以限制,比如不能放在哈士奇能咬的地方,哈士奇咬也要不穿的外壳,万一咬穿了也能立刻断电的失效安全设计。不断电也能承受住爆炸的外壳等。
作者注:当然,所谓可靠性高的产品,一般指这个。
作者记得自己看过一则新闻,所示当初Panas*nic卖5号电池给tes*a的时候,硬是逼着后者签了一系列的合同要求,才答应肯卖这个电池。
一份钱一分货。虽然外观看上去和第一个产品不会有任何区别,但实际付出可不只是一倍成本的概念。
但这时候,电池的售出价会很高。
3.3 答案3:标注0.8≤a≤1.2.或是更大范围的公差。
1)这是一个错误范围的公差么?
作者的回答:是的,因为电池X在这个范围内明确会出现爆炸的情况。
2)可以这样标注公差么?
可以,因为质量控制的手段不只是一种。比如附加背景中有介绍:公司当时已经购入一台出厂产品检测设备,价值20万。采用流水线全检。
那么,只要在出厂前,通电进行检测,坏的产品(会爆炸的产品)就绝对不会到客户的手里。虽然在检测设备内会炸个不停,但检测设备必须会有这个功能。
3)为什么要这么干?
因为成本。
比如小明公司决定电池的售出价位2元。并保证能绝对卖出。
购入100万的电池时,
当0.9≤a≤1.1,成本为100万元,销售额为200万元。那么利润为100万元。
当0.8≤a≤1.2,成本为50万元,百万电池尺寸在[0.9,1.1]范围内的为80万件,也就是能卖出是80万件,那么销售额为160元。那么利润为110万元。
这时候反而更赚钱了。
为什么更赚钱,秘诀在电池的合格率上面。因为制造业的公差形状是呈正态分布的。如下。
也就是说,哪怕是公差范围拉大一点,电池的不良率增加的也不多,所以才能赚到钱。
这个是关键中的关键。
这个实际上就是统计公差法。
4.为什么一个工程师要去设计错误的产品
降低成本。
实际上最根本的原因就是这个。
如上题所描述,这是实打实省下来的钱。
5.设计合理不良率的注意点或代价
世界上没有免费的午餐。
能剩下钱来,当然需要付出代价。如下。
1)设计者给出了一个错误的标准。
其实就作者看来,这个才是最大的危险之处。
很多在用统计公差法的工程师,压根就没有意识到自己给出了一条错误的标准。要知道,以后的设计,制造,装配,检测,都是依据你的图纸的公差来的,如果你的公差是个错的,那要把它矫正成正确的产品,付出的代价不是一点半点。
虽然作者在以前的文章中描述过,统计公差值需加符号ST。如下。
但做到的有多少工程师呢,做到后能很好理解,并控制,并能从中谋取到利益的,又有多少呢。
2)工程师应该学习的前置知识
cpk与正态分布,公差分析等。只有在充分理解这些基础知识的前提下,才能来设计。而不是一知半解。这相当于一副含砒霜的药方,庸医勿开。
3)要求制程管控
工程师应当充分了解供应商和公司的制程管理能力下去运用这种方法。如上题所述,如果合格率是70%,那么就要亏钱了。此外质量的稳定性也不是一成不变的,所以这个方法也不是那么好用。
6.设计与管理的分配
设计本身就是一种管理行为,假如将一个产品的生产过程看做是一种负担。那么,设计就是一种合理分配负担的方法。
如上题目所诉。
这种方法本质上是将制造上的负担一部分分配到后续的流程中。制造轻松了,后面的人难做了,但省钱了。
但实际上质量管理的方式远不止这一种,比如不要求制造商的合格率是100%,而是80%,那么价格也可以进一步降低(对国外的供应商就不太好用了),但也需要质量管理。后续再说。这个不是一两句话说的完的。
7.学习之道
1)要不要学这种方法
虽然作者个人本身对设计合理的错误率还是比较排斥的。但这种方法还是要学的,至少要知道有这回事情,理解作者给的这个例子。
2)要不要用
就作者看来,慎用。
没有金刚钻,不揽瓷器活。
其实这种方法带来的负面影响不只是一点半点。比如上述题目中,就谈价格了,没有来分析供应商的供应速度,还有材料的浪费等。相当于一种恶劣的习惯了。
还有,就是不是那么好控制,特别是在人性影响的前提下。
8.追加
其实统计法用在设计上是比较后期出现的,虽然从流程上作者写在了第一章。
但合理的不良率篇章后面的几点,制造,检测,量产,维修等,就比较常见了。
从知识的了解来说,反而更加需要了解后面几点。