USACO2.1.2--Ordered Fractions

Ordered Fractions

Consider the set of all reduced fractions between 0 and 1 inclusive with denominators less than or equal to N.

Here is the set when N = 5:

0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1

Write a program that, given an integer N between 1 and 160 inclusive, prints the fractions in order of increasing magnitude.

PROGRAM NAME: frac1

INPUT FORMAT

One line with a single integer N.

SAMPLE INPUT (file frac1.in)

5

OUTPUT FORMAT

One fraction per line, sorted in order of magnitude.

SAMPLE OUTPUT (file frac1.out)

0/1
1/5
1/4
1/3
2/5
1/2
3/5
2/3
3/4
4/5
1/1

题解:枚举分子和分母。分子的范围为[1,n),分母的范围为(1,n]。假设两个分数a/b和c/d,如果gcd(a,b)==1那么就是符合题目要求的。枚举出符合要求的分数之后需要进行排序,判断a/b是否大于c/d,只需判断a*d>b*c是否成立即可。

 

View Code
 1 /*
 2 ID:spcjv51
 3 PROG:frac1
 4 LANG:C
 5 */
 6 #include<stdio.h>
 7 #include<math.h>
 8 #include<stdlib.h>
 9 int a[30000],b[30000];
10 int gcd(int x,int y)
11 {
12     if(x==0) return 0;
13     if(x%y==0) return y;
14     else
15     return(gcd(y,x%y));
16 }
17 int main(void)
18 {
19     freopen("frac1.in","r",stdin);
20     freopen("frac1.out","w",stdout);
21     int i,j,ans,n,temp;
22     scanf("%d",&n);
23     ans=0;
24     for(i=1;i<n;i++)
25         for(j=i+1;j<=n;j++)
26             if(gcd(i,j)==1)
27             {
28                 ans++;
29                 a[ans]=i;
30                 b[ans]=j;
31             }
32     for(i=1;i<ans;i++)
33     for(j=i+1;j<=ans;j++)
34     if(a[i]*b[j]>a[j]*b[i])
35     {
36         temp=a[i];
37         a[i]=a[j];
38         a[j]=temp;
39         temp=b[i];
40         b[i]=b[j];
41         b[j]=temp;
42     }
43     printf("0/1\n");
44     for(i=1;i<=ans;i++)
45     printf("%d/%d\n",a[i],b[i]);
46     printf("1/1\n");
47     return 0;
48 }

 

官网的题解,效率好高!!!

我们可以把0/1和1/1作为“端点”,通过把两个分数的分子相加、分母相加得到的新分数作为中点来递归(如图)

0/1                                                              1/1
                              1/2
                 1/3                      2/3
       1/4              2/5         3/5                 3/4
   1/5      2/7     3/8    3/7   4/7   5/8       5/7         4/5

每一个分数的分子和分母都是由求和得来的,这意味着我们可以通过判断和与N的大小关系来判断递归边界。

<这是分数加成法!?数学上用于找一个无理数的近似分数>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

int n;
FILE *fout;

/* print the fractions of denominator <= n between n1/d1 and n2/d2 */
void
genfrac(int n1, int d1, int n2, int d2)
{
    if(d1+d2 > n)    /* cut off recursion */
        return;

    genfrac(n1,d1, n1+n2,d1+d2);
    fprintf(fout, "%d/%d\n", n1+n2, d1+d2);
    genfrac(n1+n2,d1+d2, n2,d2);
}

void
main(void)
{
    FILE *fin;

    fin = fopen("frac1.in", "r");
    fout = fopen("frac1.out", "w");
    assert(fin != NULL && fout != NULL);

    fscanf(fin, "%d", &n);

    fprintf(fout, "0/1\n");
    genfrac(0,1, 1,1);
    fprintf(fout, "1/1\n");
}

 

 

 

posted on 2013-02-02 20:53  仗剑奔走天涯  阅读(204)  评论(0编辑  收藏  举报

导航