●HDU 6021 MG loves string
题链:
http://acm.hdu.edu.cn/showproblem.php?pid=6021
题解:
题意:
对于一个长度为 N的由小写英文字母构成的随机字符串,
当它进行一次变换,所有字符 i 都会变成a[i]。
同时变换数组:a[i]是26个字母组成的排列。
现在需要知道这个随机串变换到自身的期望变换次数。
请你输出期望答案乘上26^N以后模 1000000007的结果。
容斥,LCM
其实题目要求的就是每种串(共有 26^N种串)回到自身的变化次数之和。
暴力求法就是:
看每种串的每个字符在循环长度为多少的循环里(设第i个位置的字符的循环长度为 Di),
则该串的变化次数为 LCM(D1,D2,D3...,DN)(最小公倍数)
不难发现,对于给定的变化数组 a[ ],循环长度不同的循环节的种类个数不超过 6 个(1+2+3+4+5+6+7>26)
6很小,所以就可以在这个 "6" 上面搞事情。
枚举循环节的集合 S,表示串里的字符只能是这些循环节的字母集合里的字母。
就是把 N 个字符放到那些循环节的字母集合中去。
(假设这个集合的循环节只包含了 W 个字母)
但是我们要使得串的变化次数为 LCM(Di, ${i}\epsilon{S}$ ),(即答案为这些循环节长度的 LCM)
那么每个循环节里面都至少要有一个字符被在里面。
所以问题转化为:N个东西分到 M 个盒子,每个盒子都至少有一个东西。
求法如下:
设 f[S] 表示在 S集合的循环节里随便放的方案数,即每个字符可以随便选择 W 个字母里面的任意一个。
显然 f[S] = $W^N$。但是这个 f[S] 有非法方案,即存在某些循环节里没有放字符。
所以容斥如下:
ANS = 没有涵盖至少 0个循环节的方案数(即f[S])
-没有涵盖至少 1个循环节的方案数
+没有涵盖至少 2个循环节的方案数
-...+...
用于容斥的方案数就直接枚举 S 的子集 _S,(方案数即为 f[_S])。
代码:
#include<cstdio> #include<cstring> #include<iostream> #define _ % mod #define filein(x) freopen(#x".in","r",stdin); #define fileout(x) freopen(#x".out","w",stdout); using namespace std; const int mod=1000000007; int f[100],vis[100],d[100],g[100],h[100],tot;; char S[100]; int T,N,ANS; int gcd(int a,int b){ while(b^=a^=b^=a%=b); return a; } int pow(int a,int b){ int now=1; while(b){ if(b&1) now=(1ll*now*a)_; a=(1ll*a*a)_; b>>=1; } return now; } void precircle(){ tot=0; scanf("%d",&N); scanf("%s",S+1); memset(d,0,sizeof(d)); memset(h,0,sizeof(h)); memset(vis,0,sizeof(vis)); for(int i=1;i<=26;i++) if(!vis[S[i]-'a'+1]){ int tmp=0,p=S[i]-'a'+1; while(!vis[p]) tmp++,vis[p]=1,p=S[p]-'a'+1; d[tmp]++; } for(int i=1;i<=26;i++) if(d[i]) tot++,g[tot]=d[i],d[tot]=i; for(int s=1,cnt;cnt=0,s<(1<<tot);s++){ for(int i=1;i<=tot;i++) if(s&(1<<(i-1))) cnt+=g[i]*d[i],h[s]++; f[s]=pow(cnt,N); } /*for(int s=1,tmp;s<(1<<tot);s++){ for(int _s=s;_s;_s=(_s-1)&s){ if(s==_s) continue; tmp=-f[_s]; tmp=(1ll*tmp+mod)_; f[s]=(1ll*f[s]+tmp+mod)_; } }正推就不用容斥了*/ for(int s=1,tmp;s<(1<<tot);s++){ for(int _s=s;_s;_s=(_s-1)&s){ if(s==_s) continue; tmp=-f[_s]; tmp=(1ll*tmp+mod)_; f[s]=(1ll*f[s]+tmp+mod)_; } }//逆推需要容斥 } void dfs(int p,int s,int lcm){ if(p==tot+1){ ANS=(1ll*ANS+(1ll*f[s]*lcm)_)_; return; } dfs(p+1,s,lcm); dfs(p+1,s|(1<<(p-1)),1ll*lcm/gcd(lcm,d[p])*d[p]); } int main() { scanf("%d",&T); while(T--){ ANS=0; precircle(); dfs(1,0,1); printf("%d\n",ANS); } return 0; }
Do not go gentle into that good night.
Rage, rage against the dying of the light.
————Dylan Thomas