●SPOJ 8222 NSUBSTR - Substrings(后缀数组)

题链:

http://www.spoj.com/problems/NSUBSTR/

题解:

同届红太阳 ——WSY给出的后缀数组解法!!!

首先用倍增算法求出 sa[i],rak[i],hei[i]
然后维护出 L[i]数组表示:
在后缀数组中,排名最小(记其排名为 L[i])的后缀与排名i的后缀的LCP>=hei[i]
同理,R[i]数组表示:
在后缀数组中,排名最大(记其排名为 R[i])的后缀与排名i的后缀的LCP>=hei[i]

以上两个数组可以由单调栈 O(N)维护出来。

然后呢,令 ANS[i]表示 长度为 i且出现次数最多的子串 的出现次数。
(ANS[]的初值都为 1。)
ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1)
最后再反着枚举一遍 ANS,用后面大的值更新前面小的值,即
ANS[i]=max(ANS[i],ANS[i+1])
显然啦,如果长度为 i的子串出现了ANS[i]次,那么长度小于i的也至少要出现 ANS[i]次。

总的时间复杂度 O(Nlog2N+N)
代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 250050
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
char S[MAXN];
int ANS[MAXN],sa[MAXN],rak[MAXN],hei[MAXN],L[MAXN],R[MAXN];
void build(int N,int M){
	static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,p,h; 
	x=ta; y=tb; h=0;
	for(int i=0;i<M;i++) cc[i]=0;
	for(int i=0;i<N;i++) cc[x[i]=S[i]]++;
	for(int i=1;i<M;i++) cc[i]+=cc[i-1];
	for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
	for(int k=1;p=0,k<N;k<<=1){
		for(int i=N-k;i<N;i++) y[p++]=i;
		for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
		for(int i=0;i<M;i++) cc[i]=0;
		for(int i=0;i<N;i++) cc[x[y[i]]]++;
		for(int i=1;i<M;i++) cc[i]+=cc[i-1];
		for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
		swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
		for(int i=1;i<N;i++)
			x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
		if(M>=N) break;
	}
	for(int i=0;i<N;i++) rak[sa[i]]=i;
	for(int i=0,j;i<N;i++){
		if(h) h--;
		if(rak[i]){
			j=sa[rak[i]-1];
			while(S[i+h]==S[j+h]) h++;
		}
		hei[rak[i]]=h;
	}
}
void pre(int N){
	static int stk[MAXN],stp[MAXN],top;
	top=0; stp[top]=0;
	for(int i=0;i<N;i++){
		while(top&&stk[top]>=hei[i]) top--;
		L[i]=stp[top]; top++;
		stk[top]=hei[i]; stp[top]=i;
	}
	top=N+1; stp[top]=N;
	for(int i=N-1;i>=0;i--){
		while(top!=N+1&&stk[top]>=hei[i]) top++;
		R[i]=stp[top]-1; top--;
		stk[top]=hei[i]; stp[top]=i;
	}
}
int main()
{
	scanf("%s",S);
	int N=strlen(S);
	build(N,300); pre(N);
	for(int i=1;i<=N;i++) ANS[i]=1;
	for(int i=0;i<N;i++) ANS[hei[i]]=max(ANS[hei[i]],R[i]-L[i]+1);
	for(int i=N-1;i;i--) ANS[i]=max(ANS[i],ANS[i+1]);
	for(int i=1;i<=N;i++) printf("%d\n",ANS[i]);
	return 0;
}
posted @ 2017-12-05 20:02  *ZJ  阅读(268)  评论(1编辑  收藏  举报