Pointnet_part_seg

下面的代码与之前的代码有很多重复之处,就不在一一注释,只注释个人还不太熟悉的

点击查看代码
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
from models.pointnet_utils import PointNetEncoder,feature_transform_reguliarzer


class get_model(nn.Module):
    def __init__(self, k=40, normal_channel=False):
        super(get_model, self).__init__()
        if normal_channel:
            channel = 6
        else:
            channel = 3
        self.feat = PointNetEncoder(global_feat=True, feature_transform=True, channel=channel)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k)
        self.dropout = nn.Dropout(p=0.4)                            #修改了将p=0.4修改成论文中的0.7
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()

    def forward(self, x):
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.fc1(x)))
        x = F.relu(self.bn2(self.dropout(self.fc2(x))))              #nn.Dropout-使每个位置的元素都有一定概率归0,以此来模拟现实生活中的某些频道的数据缺失,以达到数据增强的目的
        x = self.fc3(x)
        x = F.log_softmax(x, dim=1)                                  #F.softmax-按照行(1)或者列(0)来做归一化,F.log_softmax-在softmax的结果上做一次log运算
        return x, trans_feat

class get_loss(torch.nn.Module):
    def __init__(self, mat_diff_loss_scale=0.001):
        super(get_loss, self).__init__()
        self.mat_diff_loss_scale = mat_diff_loss_scale

    def forward(self, pred, target, trans_feat):
        loss = F.nll_loss(pred, target)                               #F.nll_loss()-nn.CrossEntropyLoss()与NLLLoss()相同,唯一不同的是前者为我们去做log_softmax
        mat_diff_loss = feature_transform_reguliarzer(trans_feat)

        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
        return total_loss

posted @   原来是只呆燕  阅读(48)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示