LeetCode-水箱问题(求最大容量)
原题:
Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
要找到两条纵线,然后这两条线以及X轴构成的容器能容纳最多的水。
关键点:
- 容量的高由两条边l与r中最短的那条决定,容量可表示为:min(l,r)*(r-l);
- 两条纵线l,r构成最大容量,令l < r,则l的左侧没有比l更高的线,r的右侧也没有比r更高的线;
- 从两边向中间靠拢,当底减小时,只有高增大才有可能使容量变大;
代码:
class Solution {
public:
int maxArea(vector<int>& height) {
int l=0;
int r=height.size()-1;
int k;
int mArea=0;
while(l<r){
mArea=max(mArea,min(height[l],height[r])*(r-l));
if(height[l]<=height[r]){
k=l+1;
while(k<r && height[k]<=height[l])k++;
l=k;
}
else{
k=r-1;
while(k>l && height[k]<=height[r])k--;
r=k;
}
}
return mArea;
}
};
再来思考一下如果是求最小容量呢?
找到最短边然后找一条相邻的纵线就构成了最小容量哈哈~~