RCNN:Rich feature hierarchies for accurate oject detection and semantic segmentation

这篇论文发布时间是 2014 年,它具有很多比较重要的意义。

在 Pascal VOC 2012 的数据集上,能够将目标检测的验证指标 mAP 提升到 53.3%,这相对于之前最好的结果提升了整整 30%.
这篇论文证明了可以讲神经网络应用在自底向上的候选区域,这样就可以进行目标分类和目标定位。
这篇论文也带来了一个观点,那就是当你缺乏大量的标注数据时,比较好的可行的手段是,进行神经网络的迁移学习,采用在其他大型数据集训练过后的神经网络,然后在小规模特定的数据集中进行 fine-tune 微调。

什么是目标检测

给定一张图片可以识别出类别就是,对象识别。

在这里插入图片描述

比如,上面的图像就需要预测物体类别为 cat。

而目标检测除了要识别类别外,还要找到他们的位置。

 

R-CNN 在前人的肩膀上前行
在过去的十多年时间里,传统的机器视觉领域,通常采用特征描述子来应对目标识别任务,这些特征描述子最常见的就是 SIFT 和 HOG.而 OpenCV 有现成的 API 可供大家实现相关的操作。

SIFT 和 HOG 的王者地位最近被卷积神经网络撼动。

2012 年 Krizhevsky 等人在 ImageNet 举办的 ILSVRC 目标识别挑战大赛中一战成名,豪夺当年的第一名,Top5 错误率 15%,而他们团队提出来的网络结构以他们的导师名字命名,它就是 AlexNet。

在这里插入图片描述

它有 5 层卷积层,2 层全连接层。

因为 AlexNet 的出现,世人的目光重回神经网络领域,以此为契机,不断涌出各种各样的网络比如 VGG、GoogleNet、ResNet 等等。

受 AlexNet 启发,论文作者尝试将 AlexNet 在 ImageNet 目标识别的能力泛化到 PASCAL VOC 目标检测上面来。

但一切开始之前,需要解决两个主要的问题。

如何利用深度的神经网络去做目标的定位?
如何在一个小规模的数据集上训练能力强劲的网络模型?
论文作者给出了思路。

利用候选区域与 CNN 结合做目标定位
借鉴了滑动窗口思想,R-CNN 采用对区域进行识别的方案。

具体是:

  • 给定一张输入图片,从图片中提取 2000 个类别独立的候选区域。
  • 对于每个区域利用 CNN 抽取一个固定长度的特征向量。
  • 再对每个区域利用 SVM 进行目标分类。


利用预训练与微调解决标注数据缺乏的问题
采用在 ImageNet 上已经训练好的模型,然后在 PASCAL VOC 数据集上进行 fine-tune。

因为 ImageNet 的图像高达几百万张,利用卷积神经网络充分学习浅层的特征,然后在小规模数据集做规模化训练,从而可以达到好的效果。

现在,我们称之为迁移学习,是必不可少的一种技能。

R-CNN 的目标识别之路
前面内容提到过,R-CNN 系统分为 3 个阶段,反应到架构上由 3 个模块完成。

生产类别独立的候选区域,这些候选区域其中包含了 R-CNN 最终定位的结果。
神经网络去针对每个候选区域提取固定长度的特征向量。
一系列的 SVM 分类器。
候选区域
能够生成候选区域的方法很多,比如:

  • objectness
  • selective search
  • category-independen object proposals
  • constrained parametric min-cuts(CPMC)
  • multi-scale combinatorial grouping
  • Ciresan

R-CNN 采用的是 Selective Search 算法。

特征抽取
R-CNN 抽取了一个 4096 维的特征向量,采用的是 Alexnet,基于 Caffe 进行代码开发。

需要注意的是 Alextnet 的输入图像大小是 227x227。

而通过 Selective Search 产生的候选区域大小不一,为了与 Alexnet 兼容,R-CNN 采用了非常暴力的手段,那就是无视候选区域的大小和形状,统一变换到 227*227 的尺寸。

有一个细节,在对 Region 进行变换的时候,首先对这些区域进行膨胀处理,在其 box 周围附加了 p 个像素,也就是人为添加了边框,在这里 p=16。

测试阶段的目标检测
在测试阶段,R-CNN 在每张图片上抽取近 2000 个候选区域。

然后将每个候选区域进行尺寸的修整变换,送进神经网络以读取特征,然后用 SVM 进行类别的识别,并产生分数。

候选区域有 2000 个,所以很多会进行重叠。

针对每个类,通过计算 IoU 指标,采取非极大性抑制,以最高分的区域为基础,剔除掉那些重叠位置的区域。

运行时分析
两个因素可以让目标识别变得高效。

CNN 的参数是所有类别共享的。
R-CNN 生成的特征向量维度较少。论文拿应用在 UVA 采用的空间金字塔技术相比,它们生成的特征维度是 360k,而 R-cnn 就 4K 多。
也就是运行过程中,参数变少了,所以比传统的高效。

体现在提取特征的时间,如果用 GPU ,13s/张,CPU 53s/张。

R-cnn 能够处理 100k 种类别,在一个多核的 CPU 上只要花费 10 多秒。

与 UVA 相比,如果处理 100k 个预测,需要 134GB 内存空间,而 R-CNN 只要 1.5GB。

训练
前面已经提到过 R-CNN 采取迁移学习。

提取在 ILSVRC 2012 的模型和权重,然后在 VOC 上进行 fine-tune。

需要注意的是,这里在 ImageNet 上训练的是模型识别物体类型的能力,而不是预测 bbox 位置的能力。

ImageNet 的训练当中需要预测 1000 个类别,而 R-CNN 在 VOC 上进行迁移学习时,神经网络只需要识别 21 个类别。这是 VOC 规定的 20 个类别加上背景这个类别。

R-CNN 将候选区域与 GroundTrue 中的 box 标签相比较,如果 IoU > 0.5,说明两个对象重叠的位置比较多,于是就可以认为这个候选区域是 Positive,否则就是 Negetive.

训练策略是:采用 SGD 训练,初始学习率为 0.001,mini-batch 大小为 128.

对象识别相关
通常对待一个二值化的分类器,它的结果只要 2 中,Positive 和 Negetive。

比如,有一个汽车分类器,它可以轻松地确认,一个方框里面包含了一辆汽车,那么它肯定就是 Positive。

也可以很清楚地确认,如果一个背景方框中没有包含汽车,那么它就是 Negetive。

但是,比较难确认的是,如果一个方框,只有一部分与汽车重叠,那么如何标注这个方框呢?

R-CNN 采用的是 IoU 的阈值,这个 threshold 取 0.3,如果一个区域与 Ground tureth 的 IoU 值低于设定的阈值,那么可以讲它看成是 Negetive.

IoU 的 threshold 它不是作者胡乱取值的,而是来自 {0,0.1,0.2,0.3,0.4,0.5} 的数值组合的。

而且,这个数值至关重要,如果 threshold 取值为 0.5,mAP 指标直接下降 5 个点,如果取值为 0,mAP 下降 4 个点。

一旦特征抽取成功,R-CNN 会用 SVM 去识别每个区域的类别,但这需要优化。

因为训练的数据太大,不可能一下子填充到电脑内存当中,R-CNN 作者采取了一种叫做 Hard negetive mining 的手段。

可视化、框架精简和错误检测
我们都知道,在卷积神经网络中,第一层可以直接用来显示,而且肉眼可视,通常他们是为了捕捉物体边缘,及突出的颜色信息,但越往后的卷积层越抽象,这个时候进行可视化就是一个挑战了。

Zeiler 和 Fergus 提出了一种基于反卷积手段的可视化研究,但 R-CNN 的作者直接提供了一个没有参数的方法,简单直接。

思路是挑选一个特征出来,把它直接当成一个物体分类器,然后计算它们处理不同的候选区域时,activation 的值,这个值代表了特征对这块区域的响应情况,然后将 activation 作为分数排名,取前几位,然后显示这些候选区域,自然也可以清楚明白,这个 feature 大概是什么。

R-CNN 作者将 pool5 作为可视化对象,它的 feature map 是 6x6x255 的规格,可以理解为有 256 个小方块,每个方块对应一个特征。

下面的图表中显示了这以可视化的效果,这里只显示了 256 个特征中的 6 个,每个特征取 activation 值最高的 16 个区域。

 

 

pool5 在上一小节已经讨论过了,那么 fc6 和 f7 就成了研究的对象。

fc6 与 pool5 构成全连接,为了计算 feature 它会乘以一个 4096x9216 的权重矩阵,然后在与一组 bias 相加,所以它有 3700 多万的参数。

fc7 是最后一层,它的权重矩阵是 4096x409,它的参数有 1678 万多的参数。

但经过作者在 PASCAL 上不做 fine-tune 处理,直接测试,可以发现 fc7 的意义没有 fc6 大,甚至移除它之后,对于 mAP 结果指标没有影响。

移除 fc7 就表示可以减少将近 1800 万个参数。

更惊喜的事情是,同时移除 fc6 和 fc7 并没有多大的损失,甚至结果还要好一点点。

所以,神经网络最神奇的力量来自卷积层,而不是全连接层。

上面说的是没有 fine-tune 的情况,那么在 fine-tune 的情况是什么呢?

结果证明,fine-tune 后 fc6 与 fc7 提升的效果明显。

所以结论就是,pool5 从 ImageNet 训练集中学习了物体的泛化能力,而能力的提升则是通过特定领域的 fine-tune。

举个例子,神经网络在 ImageNet 数据集中学习到了 100 种猫的特征,而我自己的数据集只有两种猫,经过 fine-tune 训练后,这个神经网络可以更准确识别这两种猫了。

R-CNN 还与其他的特征方法进行了能力比较,作者选取了两种基于 DPM 的方法,DPM ST 和 DPM HSC,结果都证明,R-CNN 要好于它们。

目标检测错误分析

R-CNN 作者采用了 Hoiem 提出的目标检测分析工具,能够直观地揭露错误的模型,作者通过这个工具针对性地进行 fine-tune。

bbox 回归
bbox 的值其实就是物体方框的位置,预测它就是回归问题,而不是分类问题。

受 DPM 的启发,作者训练了一个线性的回归模型,这个模型能够针对候选区域的 pool5 数据预测一个新的 box 位置。具体细节,作者放在补充材料当中。

 

语义分割

什么是语义分割?

 

区域分类技术是语义分割的标准做法,所以 R-CNN 也可以做语义分割,并且作者拿它跟 O2P 来比较。

R-CNN 进行语义分割分为 3 个阶段。

  1. 利用 CPMC 生成候选区域,然后将这些区域调整大小为 227x227,送到神经网络当中,这是 full 阶段,区域中有背景也有前景。
  2. 这个阶段只处理候选区域的前景,将背景用输入的平均值代替,然后背景就变成了 0 ,这个阶段称为 fg。
  3. full + fg 阶段,将背景和前景简单拼接。

回顾

  • R-CNN 采用 AlexNet
  • R-CNN 采用 Selective Search 技术生成 Region Proposal.
  • R-CNN 在 ImageNet 上先进行预训练,然后利用成熟的权重参数在 PASCAL VOC 数据集上进行 fine-tune
  • R-CNN 用 CNN 抽取特征,然后用一系列的的 SVM 做类别预测。
  • R-CNN 的 bbox 位置回归基于 DPM 的灵感,自己训练了一个线性回归模型。
  • R-CNN 的语义分割采用 CPMC 生成 Region

 

posted @ 2020-03-13 14:06  纯洁的小兄弟  阅读(221)  评论(0编辑  收藏  举报