Pytorch:生成随机数Tensor的方法汇总

在使用PyTorch做实验时经常会用到生成随机数Tensor的方法,比如:

torch.rand()

torch.randn()

torch.normal()

torch.linespace()

 

均匀分布

torch.rand(*sizes, out=None) → Tensor

返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int…) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量
torch.rand(2, 3)
[[0.0836 0.6151 0.6958],
 [0.6998 0.2560 0.0139]]
[torch.FloatTensor of size 2x3]

 

 

标准正态分布

 

torch.randn(*sizes, out=None) → Tensor

返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int…) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量
torch.randn(2, 3)
0.5419 0.1594 -0.0413
-2.7937 0.9534 0.4561
[torch.FloatTensor of size 2x3]

 

离散正态分布

torch.normal(means, std, out=None) → → Tensor

返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数。

标准差std是一个张量,包含每个输出元素相关的正态分布标准差。

参数:

  • means (float, optional) - 均值
  • std (Tensor) - 标准差
  • out (Tensor) - 输出张量
torch.normal(mean=0.5, std=torch.arange(1, 6))
-0.1505
-1.2949
-4.4880
-0.5697
-0.8996
[torch.FloatTensor of size 5]

 

 

线性间距向量

torch.linspace(start, end, steps=100, out=None) → Tensor

返回一个1维张量,包含在区间start和end上均匀间隔的step个点。

输出张量的长度由steps决定。

参数:

  • start (float) - 区间的起始点
  • end (float) - 区间的终点
  • steps (int) - 在start和end间生成的样本数
  • out (Tensor, optional) - 结果张量
torch.linspace(3, 10, steps=5)
3.0000
4.7500
6.5000
8.2500
10.0000
[torch.FloatTensor of size 5]

 

转载至:https://www.cnblogs.com/pythonClub/p/10412146.html

posted @ 2020-03-02 11:29  纯洁的小兄弟  阅读(17493)  评论(0编辑  收藏  举报