【数学】求导

导数

对于函数 \(f\left(x\right)\),定义其导数\(f'\left(x\right)\)

\(f'\left(x\right)\) 可以看作 \(f\left(x\right)\) 在相应位置的斜率。

多项式函数的求导

对于一个多项式函数 \(f\left(x\right) = \sum_{i=0} a_i x^i\),这个函数的导数\(f'\left(x\right) = \sum_{i = 0} i \cdot a_i x ^ {i - 1}\)(系数乘上指数,指数上减一)。

特殊函数导数

\[\left(\sin\left(x\right)\right)' = \cos\left(x\right) \]

\[\left(\cos\left(x\right)\right)' = -\sin\left(x\right) \]

\[\left(\ln\left(x\right)\right)' = \dfrac{1}{x} \]

\[\text{指数函数:}\left(a^x\right)' = a^x\ln\left(a\right)\text{(将会在后文给出证明)} \]

\[\text{特别的:}\left(e^x\right)' = e^x\ln\left(e\right) = e^x \cdot 1 = e^x \]

一般函数的求导

对于一个一般函数 \(f\left(x\right)\),其在 \(x\) 处的导数为

\[\lim_{\Delta x \to 0} \dfrac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x} \]

和积商求导法则

和差

\[\left(f\left(x\right) \pm g\left(x\right)\right)' = f'\left(x\right) \pm g'\left(x\right) \]

证明略

\[\left(f\left(x\right)g\left(x\right)\right)' = f'\left(x\right)g\left(x\right) + f\left(x\right)g'\left(x\right) \]

证明:

\[\left(f\left(x\right)g\left(x\right)\right)' = \lim_{\Delta x \to 0} \dfrac{f\left(x + \Delta x\right)g\left(x + \Delta x\right) - f\left(x\right)g\left(x\right)}{\Delta x} \]

\[= \lim_{\Delta x \to 0} \dfrac{\left(f\left(x + \Delta x\right)g\left(x + \Delta x\right) - f\left(x\right)g\left(x + \Delta x\right)\right) + \left(f\left(x\right)g\left(x + \Delta x\right) - f\left(x\right)g\left(x\right)\right)}{\Delta x} \]

\[= \lim_{\Delta x \to 0} \dfrac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x}g\left(x + \Delta x\right) + f\left(x\right)\lim_{\Delta x \to 0}\dfrac{g\left(x + \Delta x\right) - g\left(x\right)}{\Delta x} \]

\[= f'\left(x\right)g\left(x\right) + f\left(x\right)g'\left(x\right) \]

\[\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)' = \dfrac{f'\left(x\right)g\left(x\right) - f\left(x\right)g'\left(x\right)}{g^2\left(x\right)} \]

证明:

\[\left(\dfrac{f\left(x\right)}{g\left(x\right)}\right)' = \lim_{\Delta x \to 0} \dfrac{\dfrac{f\left(x + \Delta x\right)}{g\left(x + \Delta x\right)} - \dfrac{f\left(x\right)}{g\left(x\right)}}{\Delta x} \]

\[= \lim_{\Delta x \to 0} \dfrac{f\left(x + \Delta x\right)g\left(x\right) - g\left(x + \Delta x\right)f\left(x\right)}{g\left(x +\Delta x\right)g\left(x\right)\Delta x} \]

\[= \lim_{\Delta x \to 0} \dfrac{\left(f\left(x + \Delta x\right)g\left(x\right) - f\left(x\right)g\left(x\right)\right) - \left(g\left(x + \Delta x\right)f\left(x\right) - f\left(x\right)g\left(x\right)\right)}{g\left(x +\Delta x\right)g\left(x\right)\Delta x} \]

\[= \lim_{\Delta x \to 0} \dfrac{\dfrac{f\left(x + \Delta x\right) - f\left(x\right)}{\Delta x}g\left(x\right) - \dfrac{g\left(x + \Delta x\right) - g\left(x\right)}{\Delta x}f\left(x\right)}{g\left(x +\Delta x\right)g\left(x\right)} \]

\[= \dfrac{f'\left(x\right)g\left(x\right) - f\left(x\right)g'\left(x\right)}{g^2\left(x\right)} \]

复合函数

\[\left(f\left(g\left(x\right)\right)\right)' = f'\left(g\left(x\right)\right)g'\left(x\right) \]

证明:

其他

那么,关于前文“特殊函数求导”的指数函数求导,可以简单给出证明了。

\[\text{设} y = a^x \]

\[\text{则有} \ln\left(y\right) = x\ln\left(a\right) \]

\[\left(\ln\left(y\right)\right)' = \left(x\ln\left(a\right)\right)' \]

\[\dfrac{y'}{y} = 1 \cdot \ln\left(a\right) + 0 \]

(这一步左边使用了复合函数求导法则,右边使用了积的求导法则。)

再将右边的分母上的 \(y\) 乘到右边,并替换回 \(a^x\),就得到了:

\[y' = a^x\ln\left(a\right) \]

鸣谢

基本求导法则证明 by E-748

posted @ 2021-03-13 10:12  zimujun  阅读(676)  评论(2编辑  收藏  举报