通过Maven管理多个MapReduce项目

1. 配置Maven环境

  首先检查Windows是否配置了maven,进入cmd命令行,输入mvn -version命令,如果出现下图所示的 情形则表示满意配置maven。

 

  从浏览器进入maven官网,下载maven压缩包:http://maven.apache.org/download.cgi。下载完后将其解压的一个自定义目录,然后配置环境变量。

  进入环境变量配置页面,新建一个MAVEN_HOME变量,变量值为刚才解压的路径(进入能看到bin文件夹的路径)。

  然后,在Path变量下添加MAVEN_HOME变量。

  注意:老版本Windows直接在变量后面加上分号,然后加上%MAVEN_HOME%\bin。

  回到命令行,再输入mvn -version,如果出现下图所示的情形则表明配置成功。

 

2. 在Eclipse中配置Maven

  进入Eclipse,然后Window->Preferences->Maven,首先关联Maven安装路径待eclipse.

  然后配置settings.xml文件,下面的本地库保存路径可以自定义(一般默认就好)。

3. 使用Maven管理多个MapReduce项目

   首先新建一个maven项目。

 

 

  *(该图和我最后的名称不同,因为修改过,不过不影响,按照你自己的来即可)

  然后新建一个WordCount.java类,代码可以从官网下载:http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code

  此时,WordCount.java类肯定是一片红,有很多报错,这是因为我们目前还没有引入所需要的jar文件。接下来是通过Maven框架引入所依赖的jar文件,这和之前我们直接导入然后Build Path的方法不同。我们现在使用Maven框架来进行管理,我们只需要在pom.xml文件中写入以下内容就可以实现jar文件的自动下载和管理。配置完后保存文件,然后Maven会自动下载好所需要的jar文件,报错也都会给解决掉。

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
   //下面两行改为自己新建项目时的Id
    <groupId>com.hadoop</groupId>
    <artifactId>maven</artifactId>
    <version>1.0-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>maven</name>
    <url>http://maven.apache.org</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <hadoop.version>2.6.0</hadoop.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.1</version>
            <scope>test</scope>
        </dependency>
        
        <dependency>  
            <groupId>jdk.tools</groupId>  
            <artifactId>jdk.tools</artifactId>  
            <version>1.8</version>        //改成自己对于的JDK版本号
            <scope>system</scope>  
            <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>  
        </dependency>              
        
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.1</version>
                <executions>
                    <!-- Run shade goal on package phase -->
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <transformers>
                                <!-- add Main-Class to manifest file -->
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.hadoop.mavenPro.MyDriver</mainClass>      //根据自己的项目路径修改
                                </transformer>
                            </transformers>
                            <createDependencyReducedPom>false</createDependencyReducedPom>    //该句很关键,必须配置为false
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>   

   接下来调试Maven项目中的MapReduce程序。

   在右键WordCount类选择:Run as->Run Configuration。

  搜索主类:

 

  注意:如果搜不到对应类,请将Search上面的Project选择为自己所新建的项目。

  设置输入输出路径

 

  然后点击运行。

  运行结果如下:

 

 

  输出目录如下

  那么,Maven如何管理多个MapReduce程序呢?

  我们再新建一个MapReduce程序,于是我又新建了一个2.0版本的WordCount类WordCount2.java。然后配置方法同上,只是输出路径要修改一下。

  运行结果如下

 

 

  根据以上的本地调试证明两个MapReduce程序都没有问题,以下就是多个MapReduce程序的管理。

  Maven是通过ProgramDriver类来进行管理的。首先我们先新建一个MyDriver类,代码如下:

MyDriver.java

package com.hadoop.mavenPro;

import org.apache.hadoop.util.ProgramDriver;

/**
 * @author Zimo
 *
 */
public class MyDriver {

      public static void main(String argv[]){
        int exitCode = -1;
        ProgramDriver pgd = new ProgramDriver();
        try {
          pgd.addClass("wordcount", WordCount.class,                         //设置项目别名      
                       "A map/reduce program that counts the words in the input files.");   //添加项目描述
          pgd.addClass("wordcount2", WordCount2.class,
                       "A map/reduce program that counts the words in the input files.");
          exitCode = pgd.run(argv);
        }
        catch(Throwable e){
          e.printStackTrace();
        }
        
        System.exit(exitCode);
    }
}

 

  通过cmd命令行打包项目:进入项目路径->clean->package。

  然后回到Eclipse,右键项目刷新一下,target目录下也出现了相应的jar包了,可以直接上传到Hadoop集群运行。

 

  然后登陆到Hadoop集群并启动。

[hadoop@centpy ~]$ cd $HADOOP_HOME              //进入Hadoop路径
[hadoop@centpy hadoop-2.6.0]$ pwd
/usr/hadoop/hadoop-2.6.0 
[hadoop@centpy hadoop-2.6.0]$ sbin/start-all.sh //启动集群
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [centpy]
centpy: starting namenode, logging to /usr/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-namenode-centpy.out
centpy: starting datanode, logging to /usr/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-datanode-centpy.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /usr/hadoop/hadoop-2.6.0/logs/hadoop-hadoop-secondarynamenode-centpy.out
starting yarn daemons
starting resourcemanager, logging to /usr/hadoop/hadoop-2.6.0/logs/yarn-hadoop-resourcemanager-centpy.out
centpy: starting nodemanager, logging to /usr/hadoop/hadoop-2.6.0/logs/yarn-hadoop-nodemanager-centpy.out
[hadoop@centpy hadoop-2.6.0]$ jps
2113 NameNode
2643 NodeManager
2212 DataNode
2794 Jps
2542 ResourceManager
2399 SecondaryNameNode

 

 

 

   新建一个文件夹用于该项目文件的存放。

[hadoop@centpy hadoop-2.6.0]$ hadoop fs -mkdir /maven

[hadoop@centpy hadoop-2.6.0]$ hadoop fs -ls /

Found 7 items

drwxr-xr-x   - hadoop hadoop              0 2018-04-14 14:20 /hdfsOutput

drwxr-xr-x   - hadoop supergroup          0 2018-04-25 09:37 /maven

drwxrwxrwx   - hadoop supergroup          0 2018-04-13 22:10 /phone

drwxr-xr-x   - hadoop hadoop              0 2018-04-14 14:43 /test

drwx------   - hadoop hadoop              0 2018-04-13 22:10 /tmp

drwxr-xr-x   - hadoop hadoop              0 2018-04-14 14:34 /weather

drwxr-xr-x   - hadoop hadoop              0 2018-04-14 15:04 /weibo

 

 

 

   上传一个输入文件到/maven。

[hadoop@centpy hadoop-2.6.0]$ vi word.txt             //新建一个文件作为输入文件

       hadoop maven

       hadoop maven

       hadoop maven

[hadoop@centpy hadoop-2.6.0]$ hadoop fs -put word.txt /maven   //将输入文件放到HDFS中

[hadoop@centpy hadoop-2.6.0]$ hadoop fs -ls /maven

Found 1 items

-rw-r--r--   1 hadoop supergroup         39 2018-04-25 09:43 /maven/word.txt

 

 

 

  上传项目jar包

[hadoop@centpy hadoop-2.6.0]$ rz                             //上传之前打包的jar文件

 
[hadoop@centpy hadoop-2.6.0]$ ls

bin      lib               libhadoop.so.1.0.0  LICENSE.txt             sbin             word.txt

data     libexec           libhadooputils.a    logs                    share

etc      libhadoop.a       libhdfs.a           maven-1.0-SNAPSHOT.jar  Temperature.jar

include  libhadooppipes.a  libhdfs.so          NOTICE.txt              WeiboCount.jar

jar      libhadoop.so      libhdfs.so.0.0.0    README.txt              WordCount.jar

 

  运行项目

 [hadoop@centpy hadoop-2.6.0]$ hadoop jar maven-1.0-SNAPSHOT.jar wordcount /maven/word.txt /maven/output              //运行程序
                         //由于pom.xml中配置了主类,出现可以直接找到Driver类,所以不用再像以前一样写全包路径,直接写Driver类中的项目别名就行了!
18/04/25 10:35:02 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/04/25 10:35:03 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/04/25 10:35:14 INFO input.FileInputFormat: Total input paths to process : 1
18/04/25 10:35:14 INFO mapreduce.JobSubmitter: number of splits:1
18/04/25 10:35:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1524619938432_0001
18/04/25 10:35:15 INFO impl.YarnClientImpl: Submitted application application_1524619938432_0001
18/04/25 10:35:15 INFO mapreduce.Job: The url to track the job: http://centpy:8088/proxy/application_1524619938432_0001/
18/04/25 10:35:15 INFO mapreduce.Job: Running job: job_1524619938432_0001
18/04/25 10:35:41 INFO mapreduce.Job: Job job_1524619938432_0001 running in uber mode : false
18/04/25 10:35:41 INFO mapreduce.Job:  map 0% reduce 0%
18/04/25 10:35:52 INFO mapreduce.Job:  map 100% reduce 0%
18/04/25 10:36:04 INFO mapreduce.Job:  map 100% reduce 100%
18/04/25 10:36:05 INFO mapreduce.Job: Job job_1524619938432_0001 completed successfully
18/04/25 10:36:05 INFO mapreduce.Job: Counters: 49
       File System Counters
              FILE: Number of bytes read=31
              FILE: Number of bytes written=211407
              FILE: Number of read operations=0
              FILE: Number of large read operations=0
              FILE: Number of write operations=0
              HDFS: Number of bytes read=137
              HDFS: Number of bytes written=17
              HDFS: Number of read operations=6
              HDFS: Number of large read operations=0
              HDFS: Number of write operations=2
       Job Counters
              Launched map tasks=1
              Launched reduce tasks=1
              Data-local map tasks=1
              Total time spent by all maps in occupied slots (ms)=8939
              Total time spent by all reduces in occupied slots (ms)=6521
              Total time spent by all map tasks (ms)=8939
              Total time spent by all reduce tasks (ms)=6521
              Total vcore-seconds taken by all map tasks=8939
              Total vcore-seconds taken by all reduce tasks=6521
              Total megabyte-seconds taken by all map tasks=9153536
              Total megabyte-seconds taken by all reduce tasks=6677504
       Map-Reduce Framework
              Map input records=3
              Map output records=6
              Map output bytes=63
              Map output materialized bytes=31
              Input split bytes=98
              Combine input records=6
              Combine output records=2
              Reduce input groups=2
              Reduce shuffle bytes=31
              Reduce input records=2
              Reduce output records=2
              Spilled Records=4
              Shuffled Maps =1
              Failed Shuffles=0
              Merged Map outputs=1
              GC time elapsed (ms)=283
              CPU time spent (ms)=3120
              Physical memory (bytes) snapshot=302731264
              Virtual memory (bytes) snapshot=4132818944
              Total committed heap usage (bytes)=161746944
       Shuffle Errors
              BAD_ID=0
              CONNECTION=0
              IO_ERROR=0
              WRONG_LENGTH=0
              WRONG_MAP=0
              WRONG_REDUCE=0
       File Input Format Counters
              Bytes Read=39
       File Output Format Counters
              Bytes Written=17

 

  输出结果可以从浏览器进入文件系统查看。

  同样,运行我们的2.0版本的WordCount程序只需要将运行命令中的wordcount修改为wordcount2即可。

 

  运行后文件系统中也出现了结果目录

 

  到此,通过Maven框架管理多个MapReduce项目的步骤就到此结束了,大家可以多建几个MapReduce项目进行进一步测试。

 

以上就是博主为大家介绍的这一板块的主要内容,这都是博主自己的学习过程,希望能给大家带来一定的指导作用,有用的还望大家点个支持,如果对你没用也望包涵,有错误烦请指出。如有期待可关注博主以第一时间获取更新哦,谢谢! 

 

 

 

 版权声明:本文为博主原创文章,未经博主允许不得转载。

 

posted @ 2018-04-25 11:39  子墨言良  阅读(728)  评论(0编辑  收藏  举报