数据的探索, 缺失值的验证,缺失值的回归差值,缺失值坐标,某一类是否是类别变量,查看类别变量的水平(R)

验证数据集中是否有缺失值                      sum(is,na(data))   返回缺失值的个数

缺失值在哪                                               which(is.na(data), arr.ind=T)                       arr.int 返回缺失值相应的行坐标

如果没有which(arr.ind=T) 那么会返回具体的缺失值

直接删除有缺失值的行                              data <-  na.omit(data)           

 检验类别变量                    is.factor(data)  返回bool类型

查看类别水平                  print(factor(data[,1]))  会把所有的数据全部打印出来

                                        levels(data[,1])     只会打印出类别

 

 

回归法,对缺失值进行插补

首先有一个数据集 data   ,在这个数据集中有一行有缺失值,有一行完全没有缺失值,一共有两行数据

sign <- which(is.na(data[,2]), arr.ind=T)   得到第二行的数据中与缺失值的行号

data2 <- data[-sign]      得到除去有缺失值的行的数据的子集

data3 <- data[sign]        得到在原始数据集中,包含有缺失值的行所形成的的子集

fit <- lm(y~x,data=data2)   其中 y与x分别为数据框的列的名称,这样得到一个拟合模型

data[sign,2] <- predict(fit, data3) 对缺失值进行预测,并将预测的结果加进原始的数据集, 这里的data3其实只有一列数据

 

posted @   看星星的派大星  阅读(140)  评论(0编辑  收藏  举报
编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示