简单实现KNN(处理连续型数据)
import numpy as np import matplotlib.pyplot as plt import time import math import collections raw_data_x = [[3.39,2.33], [3.11,1.78], [1.34,3.36], [3.58,4.67], [2.28,2.86], [7.442,4.69], [5.74,3.53], [9.17,2.51], [7.79,3.42], [7.93,0.79] ] raw_data_y = [0,0,0,0,0,1,1,1,1,1] x_train = np.array(raw_data_x) y_train = np.array(raw_data_y) x_test = np.array([8.0,3.36]) plt.scatter(x_train[y_train == 0,0],x_train[y_train == 0,1],color = 'r') plt.scatter(x_train[y_train == 1,0],x_train[y_train == 1,1],color = 'g') plt.scatter(x_test[0],x_test[1],color = 'b') plt.show() #compute the Euclidean distance distance = [] #creat empty list for i in x_train: # for loop result_sum = math.sqrt(sum((i-x_test)**2)) #compute distance for single vector distance.append(result_sum) # add the result to list index = np.argsort(distance) k = 6 result = [y_train[i] for i in index[:k]] vote = collections.Counter(result) print("the class is {}".format(vote.most_common(1)[0][0]))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律