【Treatment-Rec 论文阅读】Data-driven Automatic Treatment Regimen Development and Recommendation
Data-driven Automatic Treatment Regimen Development and Recommendation
Authors: Leilei Sun, Chuanren Liu, Chonghui Guo, Hui Xiong, Yanming Xie
Keywords: Treatment Regimen; Treatment Recommendation, Electronic Medical Records; Temporal Sets.
KDD’16 大连理工大学 (Dalian University of Technology),卓克索大学 (Drexel University),中国中医科学院 (China Academy of China Medical Sciences)
论文链接:https://dl.acm.org/doi/pdf/10.1145/2939672.2939866
0. 总结
本文方法比较清晰,专注于脑梗塞这一种疾病,给新进入系统的病人推荐治疗方案。但假设比较强,是治疗方案推荐的很好的初步尝试。
数据是在中国收集的,不知道相关数据集和代码是否已经公开?
1.研究目标
根据历史病历数据,对患者和治疗方案分别进行分类,并提取出一些典型的治疗方案。对新患者,根据患者基本信息和诊断信息,推荐相应的治疗方案,辅助医疗决策,提高治愈率和治疗有效性。
2.问题背景
电子病历信息没有被充分利用,医疗资源分布不均,大数据手段可以提高医疗效率,提高整体医疗水平。
3. 问题定义-EMR 的内容
本文用到的电子医疗记录(Electronic Medical Records, EMRs)主要包含以下五种信息:
3.1 人口统计信息 Demographic Information
包含患者的基本信息,如性别、年龄、家庭住址、种族、受教育程度等信息。
3.2 诊断信息 Diagnostic Information
包含疾病名称和严重程度
3.3 医嘱 Doctor Order
包含药物名称、使用方式、剂量、频率、开始日期和结束日期。
3.4 治疗方案 Treatment
治疗方案是在医嘱之上整理出来的,记录患者每天接受了哪些治疗。
进一步,可以将患者的病程分为几个阶段,每个阶段都有几个治疗方案,其中记录了患者接受了哪些治疗,分别接受了几次(这里就不记录这几次治疗具体发生的日期,而是只记录次数)。
3.5 结果 Outcome
结果指患者出院时医生对患者的状态评估,可以分为“治愈(cured)“,“改善(improved)”,“无效(ineffective)”,“死亡(dead)”。

上面五种信息中,前两个(基本信息和诊断信息)可以视为条件,第四个(治疗方案)可以视为干预变量,最后一个(结果)可以视为目标。
4. 方法
4.1 治疗方案相似度度量
总体思路:每个患者的治疗方案可以被分为多个阶段的治疗方案,每个阶段的治疗方案包含用了哪些药物,以及服用方式、剂量和使用次数。在相似度度量时,首先度量各个对应阶段之间的相似度(如果阶段数量不一样怎么办?),然后再整合得到整体相似度。
- 治疗方案相似度首先被拆分为药物之间的相似度——相同名称的药物会有非零相似度,再根据服用方式、剂量和频率来计算一个0到1之间的相似度数值。
- 两个分阶段治疗方案之间的相似度变为两个集合之间的相似度度量,其中集合元素之间的相似度已知。
- 本文提出一种矩阵,将元素之间的相似度加权组合为集合之间的相似度。
- 得到各个阶段治疗方案的相似度之后,再加权平均得到两个治疗方案的整体相似度
4.2 治疗方案聚类
基于治疗方案之间的相似度,本文提出一种基于密度峰值的聚类算法,可以得到治疗方案的聚类中心。
4.3 提取典型治疗方案
由于本场景的特殊性,聚类中心的治疗方案也无法完全代表这类每个类别,仍需进一步处理。
具体来说,就是看一下哪些药物用的比较多,再提取一下典型的使用剂量、使用方式和持续时间等信息。
4.4 治疗方案推荐
对病人也进行分类(决策树),每个叶子节点认为是一个类型的患者,然后看一下这些患者使用哪个典型治疗方案比较多,就作为这个叶子节点的推荐方案。
5. 实验
5.1 数据
数据来自中国14家三甲医院,分布在北京,石家庄,深圳,济南,长春,福州和西安。
实验专注于脑梗塞的药物推荐。
收集了2.7万的患者数据,医嘱数量100万。
5.2 提取典型治疗方案
其中使用了1090种药物,但大多数药物都是用于治疗其他疾病的。本文选取了138种最相关的药物,有36万医嘱包含这些药物,平均每个患者13个。
治疗过程分为四个阶段:前24小时、2-3天、4-7天、8-14天。
最终提取出四种典型的治疗方案

5.3 治疗方案推荐
对病人进行分类,分了17个类别。每个类别找一个治疗效果最好的(不一定是使用最多的)作为推荐结果。
5.4 推荐效果评估
由于每个类别都找到了统计上治疗效果最好的治疗方案,假设这些治疗方案推广到这个类别上的所有患者,再假设推广到其他患者身上之后仍然有这么好的治疗效果,计算一下推广之后,总体的治疗有效率和治愈率能提升多少。

本文来自博客园,作者:赵子豪,中国科学技术大学LDS实验室博士在读
转载请注明原文链接:https://www.cnblogs.com/zihaojun/p/16115983.html
原创不易,如果感觉不错,希望给个推荐!您的支持是我写作的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具