【KMP】POJ 2185 Milking Grid -- Next函数的应用

题目链接:http://poj.org/problem?id=2185
题目大意:求一个二维的字符串矩阵的最小覆盖子矩阵,即这个最小覆盖子矩阵在二维空间上不断翻倍后能覆盖原始矩阵。
题目分析:next函数的应用。需要枚举每一行每一列的字符串所对应的的 nxt[] 值,然后通过分析计算出最小的宽和最小的高。

具体分析

参考链接:https://blog.csdn.net/u013686535/article/details/52197467
一看这题,容易想出一种很直观的做法:求出每一行的最小重复串长度,取所有行的最小重复串长度的lcm为宽;对列也同样操作求出高。这种想法虽然很直观,但是否正确呢?
事实上,这种算法并不是正确的。如下面的这个反例:

2 8 
ABCDEFAB 
AAAABAAA

对于这个例子:第一行为6,第二行为5,6与5的最小公倍数为30,大于8则取8为宽,但明显是错误的。
但由于poj的测试数据太弱,以致使用这种方法的程序也可以通过。
下面介绍一下正解的做法。
首先是确定宽度:我们分别求出每行所有可能的重复子串长度,例如对于aaaa就有1、2、3和4,然后取每行都有的重复子串长度中最小的作为宽。
例如,对于上面的例子,第一行的重复子串长度只可能是6或8(显然整个串为一个重复子串也是可以的),第二行则可能是5、6、7或8,那么取它们都有的6和8当中最小值6,就是最小覆盖子矩阵的宽。
然后分成两步:

  • 考虑到每行的列数比较小, 1<=C<=75 ,可以直接暴力枚举重复子串的长度,每列逐一检查是否与当前枚举的重复子串相对应。因此求宽度这个部分的时间复杂度为 O(R*C^2)
  • 找到C以后我们再来一个个枚举R就可以了,时间复杂度也是 O(R*C^2)

不过我这里采用标记的方式,时间复杂度降到 O(R*C)

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 404000;

int m, nxt[maxn];
string t;

int N, M;
char ch[10010][80];
int cnt_c[80], cnt_r[10010];

void cal_next() {
    m = t.length();
    for (int i = 0, j = -1; i < m; i ++) {
        while (j != -1 && t[j+1] != t[i]) j = nxt[j];
        nxt[i] = (j+1 < i && t[j+1] == t[i]) ? ++j : -1;
    }
}

void solve() {
    // 首先清空用于记录的cnt_c和cnt_r数组
    memset(cnt_c, 0 ,sizeof(cnt_c));
    memset(cnt_r, 0, sizeof(cnt_r));
    // 遍历每一行
    for (int i = 0; i < N; i ++) {
        t = "";
        for (int j = 0; j < M; j ++) t += ch[i][j];
        cal_next();
        int j = m-1;
        while (nxt[j] != -1) {
            j = nxt[j];
            cnt_c[m-1-j] ++;
        }
    }
    // 遍历每一列
    for (int i = 0; i < M; i ++) {
        t = "";
        for (int j = 0; j < N; j ++) t += ch[j][i];
        cal_next();
        int j = m-1;
        while (nxt[j] != -1) {
            j = nxt[j];
            cnt_r[m-1-j] ++;
        }
    }
    // 找到最小的cnt_c[i]==N,没有则M
    int cc = 1, rr = 1;
    for (; cc < M; cc ++) if (cnt_c[cc] == N) break;
    // 找到最小的cnt_r[i]==M,没有则N
    for (; rr < N; rr ++) if (cnt_r[rr] == M) break;
    cout << rr * cc << endl;
}

int main() {
    while (cin >> N >> M) {
        for (int i = 0; i < N; i ++) cin >> ch[i];
        solve();
    }
    return 0;
}
posted @ 2019-04-23 13:59  zifeiy  阅读(216)  评论(0编辑  收藏  举报