POJ Corn Fields 状态压缩DP基础题
题目链接:http://poj.org/problem?id=3254
题目大意(名称什么的可能不一样,不过表达的意思还是一样的):
种玉米
王小二从小学一年级到现在每次考试都是班级倒数第一名,他的爸爸王大强觉得读书对于王小二来说应该是没有出路了,于是决定让王小二继承自己的衣钵,从事一份非常有前途的工作——种玉米。王大强是一位富有的农场主,他拥有一块 M*N
平方米的矩形田地专门用来种玉米(1<=M,N<=12)。这个玉米地被分成了 M*N
个,每个格子是一个大小为1平方米的格子。这块玉米地中有一些格子因为还没有开垦,所以上面长满了岩石,所以这些格子是不适合种玉米的。相邻的格子也是不能同时种玉米的,因为如果这么做了的话,两个格子区域的玉米因为相互抢夺土壤里面的资源结果会都长不好。
虽然王小二的成绩不好,但是他是一个喜欢思考的人,他想要知道一共有多少种可行的方式来种玉米。
输入
第一行包括两个正数M和N。
接下来M行每行包含N个整数,数字1表示这个格子是适合种玉米的,数字0表示这个格子不适合种玉米。
输出
输出一个整数,表示种玉米的方案数。(除 100,000,000 取模)
样例输入
2 3
1 1 1
0 1 0
样例输出
9
题目分析:这道题目可以用状态压缩DP来处理。
dp[i][j]
表示第i行的状态取为j的时候的方案总数,那么这个j的状态是什么意思呢?
j虽然是一个整数,但是它其实表示的是一行的所有二进制状态。
比如,如果我们某一行的三个格子分别是:种、不种、种,我们用 1
表示“种”,用 0
表示“不种”, 那么这一行其实可以表示成 1,0,1
对应的二进制数就是 101
,这个数对应的十进制的数就是 1*4+0*2+1*1 = 5
,
我们还要过滤一下每一行的状态,第i行的状态j成立的条件是:
- j对应的状态上没有在有岩石的格子上种玉米;
- j对应的状态不会有连续的两列上种玉米。
这两点我在代码上面有比较明确的体现。
然后我们就可以得到状态转移方程:
dp[i][j] = 1, 其中i==0(第0行),j是第i行的合理状态(满足上面提到的两个条件)
dp[i][j] = sum(dp[i-1][k]),其中i>0,j是第i行的合理状态,k是第i-1行的所有合理状态的集合,并且j和k状态满足关系式:j&k==0,对应的字面意思就是不存在连续的两行同一列都种着玉米
最后的结果就是 sum(dp[M-1][j])
,其中j对应第M-1的所有合理状态。
代码:
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
const int maxn = 13;
const int MOD = 100000000;
int M, N, dp[maxn][1<<maxn], g[maxn][maxn];
vector<int> states[maxn];
void test() {
for (int i = 0; i < M; i ++) {
cout << (i+1) << "(" << states[i].size() << "): ";
int sz = states[i].size();
for (int j = 0; j < sz; j ++) {
if (j) cout << ",";
cout << states[i][j];
}
cout << endl;
}
cout << "check:" << endl;
for (int i = 0; i < states[M-1].size(); i ++) {
if (dp[M-1][i]) {
cout << "\t" << i << " : " << dp[M-1][i] << endl;
}
}
}
int main() {
while (cin >> M >> N) {
memset(dp, 0, sizeof(dp));
for (int i = 0; i < M; i ++) {
for (int j = 0; j < N; j ++) {
cin >> g[i][j];
}
}
for (int i = 0; i < M; i ++) {
states[i].clear();
for (int j = 0; j < (1<<N); j ++) {
bool flag = true;
// 判断是否在岩石上种了玉米
for (int k = 0; k < N; k ++) {
if (g[i][k] == 0 && j&(1<<k)) {
flag = false;
break;
}
}
// 判断是否相邻的格子都种了玉米
if (flag) {
for (int k = 0; k < N-1; k ++) {
if (j&(1<<k) && j&(1<<(k+1))) {
flag = false;
break;
}
}
}
if (flag) {
states[i].push_back(j);
}
}
}
int sum = 0;
for (int i = 0; i < M; i ++) {
int sz = states[i].size();
for (int j = 0; j < sz; j ++) {
int p = states[i][j];
if (i == 0) dp[i][p] = 1;
else {
int sz2 = states[i-1].size();
for (int k = 0; k < sz2; k ++) {
int q = states[i-1][k];
if (!(p&q)) {
dp[i][p] += dp[i-1][q];
dp[i][p] %= MOD;
}
}
}
if (i == M-1) {
sum += dp[i][p];
sum %= MOD;
}
}
}
cout << sum << endl;
// test();
}
return 0;
}