一个经典组合问题的推

\(\textbf{Statement.}\)

化简下面的式子:

\[\sum_{x\in \{-1,1\}^n}|x_1+x_2+\dots+x_n| \]

(先别急着看题解,可以当作练习题)


\(\textbf{Solution.}\)

较为详细的过程:

\[\begin{aligned} &\sum_{x\in \{-1,1\}^n}|x_1+x_2+\dots+x_n|\\ &=\sum_{i=0}^{n}|n-2i|{n\choose i}\\ &=2\sum_{i=0}^{\lfloor n/2\rfloor}(n-2i){n\choose i}\\ &=2\sum_{i=0}^{\lfloor n/2\rfloor}{n\choose i}{n-i\choose 1}-{n\choose i}{i\choose 1}\\ &=2\sum_{i=0}^{\lfloor n/2\rfloor}{n\choose 1}{n-1\choose i}-{n\choose 1}{n-1\choose i-1}\\ &=2n\sum_{i=0}^{\lfloor n/2\rfloor}{n-1\choose i}-{n-1\choose i-1}\\ &=2n{n-1\choose \lfloor n/2\rfloor} \end{aligned} \]

posted @ 2023-10-13 22:28  zifanwang  阅读(4)  评论(0编辑  收藏  举报  来源