Loading

pyecharts可视化图表

官网介绍

https://pyecharts.org/#/zh-cn/intro

https://gallery.pyecharts.org/#/README

📣 概况

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

✨ 特性

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  • 囊括了 30+ 种常见图表,应有尽有
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
  • 可轻松集成至 Flask,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表
  • 详细的文档和示例,帮助开发者更快的上手项目
  • 多达 400+ 地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持

 

pip安装

pip install pyecharts

 

第一个图表

from pyecharts.charts import Bar

bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()

 

用链式调用

from pyecharts.charts import Bar

bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render()

使用 options 配置项

from pyecharts.charts import Bar
from pyecharts import options as opts

# V1 版本开始支持链式调用
# 你所看到的格式其实是 `black` 格式化以后的效果
# 可以执行 `pip install black` 下载使用
bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
    .set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
    # 或者直接使用字典参数
    # .set_global_opts(title_opts={"text": "主标题", "subtext": "副标题"})
)
bar.render()

# 不习惯链式调用的开发者依旧可以单独调用方法
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
bar.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
bar.render()

  

渲染成图片文件

from pyecharts.charts import Bar
from pyecharts.render import make_snapshot

# 使用 snapshot-selenium 渲染图片
from snapshot_selenium import snapshot

bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
make_snapshot(snapshot, bar.render(), "bar.png")

记得修改一下chrome_driver的位置

  

安装snapshot_selenium

pip install snapshot_selenium

from pyecharts.charts import Bar
from pyecharts.render import make_snapshot

# 使用 snapshot-selenium 渲染图片
from snapshot_selenium import snapshot

bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
make_snapshot(snapshot, bar.render(), "bar.png")

 

 

使用主题

from pyecharts.charts import Bar
from pyecharts import options as opts
# 内置主题类型可查看 pyecharts.globals.ThemeType
from pyecharts.globals import ThemeType
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot


bar = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
    .add_yaxis("商家B", [15, 6, 45, 20, 35, 66])
    .set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
)
make_snapshot(snapshot, bar.render(), "bar.png")

 

 

柱状图

Bar - Stack_bar_percent

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType

list2 = [
    {"value": 12, "percent": 12 / (12 + 3)},
    {"value": 23, "percent": 23 / (23 + 21)},
    {"value": 33, "percent": 33 / (33 + 5)},
    {"value": 3, "percent": 3 / (3 + 52)},
    {"value": 33, "percent": 33 / (33 + 43)},
]

list3 = [
    {"value": 3, "percent": 3 / (12 + 3)},
    {"value": 21, "percent": 21 / (23 + 21)},
    {"value": 5, "percent": 5 / (33 + 5)},
    {"value": 52, "percent": 52 / (3 + 52)},
    {"value": 43, "percent": 43 / (33 + 43)},
]

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis([1, 2, 3, 4, 5])
    .add_yaxis("product1", list2, stack="stack1", category_gap="50%")
    .add_yaxis("product2", list3, stack="stack1", category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data.percent * 100).toFixed() + '%';}"
            ),
        )
    )
    .render("stack_bar_percent.html")
)

 

 

Bar - Bar_rotate_xaxis_label

from pyecharts import options as opts
from pyecharts.charts import Bar

c = (
    Bar()
    .add_xaxis(
        [
            "名字很长的X轴标签1",
            "名字很长的X轴标签2",
            "名字很长的X轴标签3",
            "名字很长的X轴标签4",
            "名字很长的X轴标签5",
            "名字很长的X轴标签6",
        ]
    )
    .add_yaxis("商家A", [10, 20, 30, 40, 50, 40])
    .add_yaxis("商家B", [20, 10, 40, 30, 40, 50])
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),
    )
    .render("bar_rotate_xaxis_label.html")
)

 

 

Bar - Bar_stack0

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), stack="stack1")
    .add_yaxis("商家B", Faker.values(), stack="stack1")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
    .render("bar_stack0.html")
)

 

 

Bar - Finance_indices_2002

   1 import pyecharts.options as opts
   2 from pyecharts.charts import Timeline, Bar, Pie
   3 
   4 """
   5 Gallery 使用 pyecharts 1.1.0
   6 参考地址: https://www.echartsjs.com/examples/editor.html?c=mix-timeline-finance
   7 
   8 目前无法实现的功能:
   9 
  10 1、暂无
  11 """
  12 total_data = {}
  13 name_list = [
  14     "北京",
  15     "天津",
  16     "河北",
  17     "山西",
  18     "内蒙古",
  19     "辽宁",
  20     "吉林",
  21     "黑龙江",
  22     "上海",
  23     "江苏",
  24     "浙江",
  25     "安徽",
  26     "福建",
  27     "江西",
  28     "山东",
  29     "河南",
  30     "湖北",
  31     "湖南",
  32     "广东",
  33     "广西",
  34     "海南",
  35     "重庆",
  36     "四川",
  37     "贵州",
  38     "云南",
  39     "西藏",
  40     "陕西",
  41     "甘肃",
  42     "青海",
  43     "宁夏",
  44     "新疆",
  45 ]
  46 data_gdp = {
  47     2011: [
  48         16251.93,
  49         11307.28,
  50         24515.76,
  51         11237.55,
  52         14359.88,
  53         22226.7,
  54         10568.83,
  55         12582,
  56         19195.69,
  57         49110.27,
  58         32318.85,
  59         15300.65,
  60         17560.18,
  61         11702.82,
  62         45361.85,
  63         26931.03,
  64         19632.26,
  65         19669.56,
  66         53210.28,
  67         11720.87,
  68         2522.66,
  69         10011.37,
  70         21026.68,
  71         5701.84,
  72         8893.12,
  73         605.83,
  74         12512.3,
  75         5020.37,
  76         1670.44,
  77         2102.21,
  78         6610.05,
  79     ],
  80     2010: [
  81         14113.58,
  82         9224.46,
  83         20394.26,
  84         9200.86,
  85         11672,
  86         18457.27,
  87         8667.58,
  88         10368.6,
  89         17165.98,
  90         41425.48,
  91         27722.31,
  92         12359.33,
  93         14737.12,
  94         9451.26,
  95         39169.92,
  96         23092.36,
  97         15967.61,
  98         16037.96,
  99         46013.06,
 100         9569.85,
 101         2064.5,
 102         7925.58,
 103         17185.48,
 104         4602.16,
 105         7224.18,
 106         507.46,
 107         10123.48,
 108         4120.75,
 109         1350.43,
 110         1689.65,
 111         5437.47,
 112     ],
 113     2009: [
 114         12153.03,
 115         7521.85,
 116         17235.48,
 117         7358.31,
 118         9740.25,
 119         15212.49,
 120         7278.75,
 121         8587,
 122         15046.45,
 123         34457.3,
 124         22990.35,
 125         10062.82,
 126         12236.53,
 127         7655.18,
 128         33896.65,
 129         19480.46,
 130         12961.1,
 131         13059.69,
 132         39482.56,
 133         7759.16,
 134         1654.21,
 135         6530.01,
 136         14151.28,
 137         3912.68,
 138         6169.75,
 139         441.36,
 140         8169.8,
 141         3387.56,
 142         1081.27,
 143         1353.31,
 144         4277.05,
 145     ],
 146     2008: [
 147         11115,
 148         6719.01,
 149         16011.97,
 150         7315.4,
 151         8496.2,
 152         13668.58,
 153         6426.1,
 154         8314.37,
 155         14069.87,
 156         30981.98,
 157         21462.69,
 158         8851.66,
 159         10823.01,
 160         6971.05,
 161         30933.28,
 162         18018.53,
 163         11328.92,
 164         11555,
 165         36796.71,
 166         7021,
 167         1503.06,
 168         5793.66,
 169         12601.23,
 170         3561.56,
 171         5692.12,
 172         394.85,
 173         7314.58,
 174         3166.82,
 175         1018.62,
 176         1203.92,
 177         4183.21,
 178     ],
 179     2007: [
 180         9846.81,
 181         5252.76,
 182         13607.32,
 183         6024.45,
 184         6423.18,
 185         11164.3,
 186         5284.69,
 187         7104,
 188         12494.01,
 189         26018.48,
 190         18753.73,
 191         7360.92,
 192         9248.53,
 193         5800.25,
 194         25776.91,
 195         15012.46,
 196         9333.4,
 197         9439.6,
 198         31777.01,
 199         5823.41,
 200         1254.17,
 201         4676.13,
 202         10562.39,
 203         2884.11,
 204         4772.52,
 205         341.43,
 206         5757.29,
 207         2703.98,
 208         797.35,
 209         919.11,
 210         3523.16,
 211     ],
 212     2006: [
 213         8117.78,
 214         4462.74,
 215         11467.6,
 216         4878.61,
 217         4944.25,
 218         9304.52,
 219         4275.12,
 220         6211.8,
 221         10572.24,
 222         21742.05,
 223         15718.47,
 224         6112.5,
 225         7583.85,
 226         4820.53,
 227         21900.19,
 228         12362.79,
 229         7617.47,
 230         7688.67,
 231         26587.76,
 232         4746.16,
 233         1065.67,
 234         3907.23,
 235         8690.24,
 236         2338.98,
 237         3988.14,
 238         290.76,
 239         4743.61,
 240         2277.35,
 241         648.5,
 242         725.9,
 243         3045.26,
 244     ],
 245     2005: [
 246         6969.52,
 247         3905.64,
 248         10012.11,
 249         4230.53,
 250         3905.03,
 251         8047.26,
 252         3620.27,
 253         5513.7,
 254         9247.66,
 255         18598.69,
 256         13417.68,
 257         5350.17,
 258         6554.69,
 259         4056.76,
 260         18366.87,
 261         10587.42,
 262         6590.19,
 263         6596.1,
 264         22557.37,
 265         3984.1,
 266         918.75,
 267         3467.72,
 268         7385.1,
 269         2005.42,
 270         3462.73,
 271         248.8,
 272         3933.72,
 273         1933.98,
 274         543.32,
 275         612.61,
 276         2604.19,
 277     ],
 278     2004: [
 279         6033.21,
 280         3110.97,
 281         8477.63,
 282         3571.37,
 283         3041.07,
 284         6672,
 285         3122.01,
 286         4750.6,
 287         8072.83,
 288         15003.6,
 289         11648.7,
 290         4759.3,
 291         5763.35,
 292         3456.7,
 293         15021.84,
 294         8553.79,
 295         5633.24,
 296         5641.94,
 297         18864.62,
 298         3433.5,
 299         819.66,
 300         3034.58,
 301         6379.63,
 302         1677.8,
 303         3081.91,
 304         220.34,
 305         3175.58,
 306         1688.49,
 307         466.1,
 308         537.11,
 309         2209.09,
 310     ],
 311     2003: [
 312         5007.21,
 313         2578.03,
 314         6921.29,
 315         2855.23,
 316         2388.38,
 317         6002.54,
 318         2662.08,
 319         4057.4,
 320         6694.23,
 321         12442.87,
 322         9705.02,
 323         3923.11,
 324         4983.67,
 325         2807.41,
 326         12078.15,
 327         6867.7,
 328         4757.45,
 329         4659.99,
 330         15844.64,
 331         2821.11,
 332         713.96,
 333         2555.72,
 334         5333.09,
 335         1426.34,
 336         2556.02,
 337         185.09,
 338         2587.72,
 339         1399.83,
 340         390.2,
 341         445.36,
 342         1886.35,
 343     ],
 344     2002: [
 345         4315,
 346         2150.76,
 347         6018.28,
 348         2324.8,
 349         1940.94,
 350         5458.22,
 351         2348.54,
 352         3637.2,
 353         5741.03,
 354         10606.85,
 355         8003.67,
 356         3519.72,
 357         4467.55,
 358         2450.48,
 359         10275.5,
 360         6035.48,
 361         4212.82,
 362         4151.54,
 363         13502.42,
 364         2523.73,
 365         642.73,
 366         2232.86,
 367         4725.01,
 368         1243.43,
 369         2312.82,
 370         162.04,
 371         2253.39,
 372         1232.03,
 373         340.65,
 374         377.16,
 375         1612.6,
 376     ],
 377 }
 378 
 379 data_pi = {
 380     2011: [
 381         136.27,
 382         159.72,
 383         2905.73,
 384         641.42,
 385         1306.3,
 386         1915.57,
 387         1277.44,
 388         1701.5,
 389         124.94,
 390         3064.78,
 391         1583.04,
 392         2015.31,
 393         1612.24,
 394         1391.07,
 395         3973.85,
 396         3512.24,
 397         2569.3,
 398         2768.03,
 399         2665.2,
 400         2047.23,
 401         659.23,
 402         844.52,
 403         2983.51,
 404         726.22,
 405         1411.01,
 406         74.47,
 407         1220.9,
 408         678.75,
 409         155.08,
 410         184.14,
 411         1139.03,
 412     ],
 413     2010: [
 414         124.36,
 415         145.58,
 416         2562.81,
 417         554.48,
 418         1095.28,
 419         1631.08,
 420         1050.15,
 421         1302.9,
 422         114.15,
 423         2540.1,
 424         1360.56,
 425         1729.02,
 426         1363.67,
 427         1206.98,
 428         3588.28,
 429         3258.09,
 430         2147,
 431         2325.5,
 432         2286.98,
 433         1675.06,
 434         539.83,
 435         685.38,
 436         2482.89,
 437         625.03,
 438         1108.38,
 439         68.72,
 440         988.45,
 441         599.28,
 442         134.92,
 443         159.29,
 444         1078.63,
 445     ],
 446     2009: [
 447         118.29,
 448         128.85,
 449         2207.34,
 450         477.59,
 451         929.6,
 452         1414.9,
 453         980.57,
 454         1154.33,
 455         113.82,
 456         2261.86,
 457         1163.08,
 458         1495.45,
 459         1182.74,
 460         1098.66,
 461         3226.64,
 462         2769.05,
 463         1795.9,
 464         1969.69,
 465         2010.27,
 466         1458.49,
 467         462.19,
 468         606.8,
 469         2240.61,
 470         550.27,
 471         1067.6,
 472         63.88,
 473         789.64,
 474         497.05,
 475         107.4,
 476         127.25,
 477         759.74,
 478     ],
 479     2008: [
 480         112.83,
 481         122.58,
 482         2034.59,
 483         313.58,
 484         907.95,
 485         1302.02,
 486         916.72,
 487         1088.94,
 488         111.8,
 489         2100.11,
 490         1095.96,
 491         1418.09,
 492         1158.17,
 493         1060.38,
 494         3002.65,
 495         2658.78,
 496         1780,
 497         1892.4,
 498         1973.05,
 499         1453.75,
 500         436.04,
 501         575.4,
 502         2216.15,
 503         539.19,
 504         1020.56,
 505         60.62,
 506         753.72,
 507         462.27,
 508         105.57,
 509         118.94,
 510         691.07,
 511     ],
 512     2007: [
 513         101.26,
 514         110.19,
 515         1804.72,
 516         311.97,
 517         762.1,
 518         1133.42,
 519         783.8,
 520         915.38,
 521         101.84,
 522         1816.31,
 523         986.02,
 524         1200.18,
 525         1002.11,
 526         905.77,
 527         2509.14,
 528         2217.66,
 529         1378,
 530         1626.48,
 531         1695.57,
 532         1241.35,
 533         361.07,
 534         482.39,
 535         2032,
 536         446.38,
 537         837.35,
 538         54.89,
 539         592.63,
 540         387.55,
 541         83.41,
 542         97.89,
 543         628.72,
 544     ],
 545     2006: [
 546         88.8,
 547         103.35,
 548         1461.81,
 549         276.77,
 550         634.94,
 551         939.43,
 552         672.76,
 553         750.14,
 554         93.81,
 555         1545.05,
 556         925.1,
 557         1011.03,
 558         865.98,
 559         786.14,
 560         2138.9,
 561         1916.74,
 562         1140.41,
 563         1272.2,
 564         1532.17,
 565         1032.47,
 566         323.48,
 567         386.38,
 568         1595.48,
 569         382.06,
 570         724.4,
 571         50.9,
 572         484.81,
 573         334,
 574         67.55,
 575         79.54,
 576         527.8,
 577     ],
 578     2005: [
 579         88.68,
 580         112.38,
 581         1400,
 582         262.42,
 583         589.56,
 584         882.41,
 585         625.61,
 586         684.6,
 587         90.26,
 588         1461.51,
 589         892.83,
 590         966.5,
 591         827.36,
 592         727.37,
 593         1963.51,
 594         1892.01,
 595         1082.13,
 596         1100.65,
 597         1428.27,
 598         912.5,
 599         300.75,
 600         463.4,
 601         1481.14,
 602         368.94,
 603         661.69,
 604         48.04,
 605         435.77,
 606         308.06,
 607         65.34,
 608         72.07,
 609         509.99,
 610     ],
 611     2004: [
 612         87.36,
 613         105.28,
 614         1370.43,
 615         276.3,
 616         522.8,
 617         798.43,
 618         568.69,
 619         605.79,
 620         83.45,
 621         1367.58,
 622         814.1,
 623         950.5,
 624         786.84,
 625         664.5,
 626         1778.45,
 627         1649.29,
 628         1020.09,
 629         1022.45,
 630         1248.59,
 631         817.88,
 632         278.76,
 633         428.05,
 634         1379.93,
 635         334.5,
 636         607.75,
 637         44.3,
 638         387.88,
 639         286.78,
 640         60.7,
 641         65.33,
 642         461.26,
 643     ],
 644     2003: [
 645         84.11,
 646         89.91,
 647         1064.05,
 648         215.19,
 649         420.1,
 650         615.8,
 651         488.23,
 652         504.8,
 653         81.02,
 654         1162.45,
 655         717.85,
 656         749.4,
 657         692.94,
 658         560,
 659         1480.67,
 660         1198.7,
 661         798.35,
 662         886.47,
 663         1072.91,
 664         658.78,
 665         244.29,
 666         339.06,
 667         1128.61,
 668         298.69,
 669         494.6,
 670         40.7,
 671         302.66,
 672         237.91,
 673         48.47,
 674         55.63,
 675         412.9,
 676     ],
 677     2002: [
 678         82.44,
 679         84.21,
 680         956.84,
 681         197.8,
 682         374.69,
 683         590.2,
 684         446.17,
 685         474.2,
 686         79.68,
 687         1110.44,
 688         685.2,
 689         783.66,
 690         664.78,
 691         535.98,
 692         1390,
 693         1288.36,
 694         707,
 695         847.25,
 696         1015.08,
 697         601.99,
 698         222.89,
 699         317.87,
 700         1047.95,
 701         281.1,
 702         463.44,
 703         39.75,
 704         282.21,
 705         215.51,
 706         47.31,
 707         52.95,
 708         305,
 709     ],
 710 }
 711 
 712 data_si = {
 713     2011: [
 714         3752.48,
 715         5928.32,
 716         13126.86,
 717         6635.26,
 718         8037.69,
 719         12152.15,
 720         5611.48,
 721         5962.41,
 722         7927.89,
 723         25203.28,
 724         16555.58,
 725         8309.38,
 726         9069.2,
 727         6390.55,
 728         24017.11,
 729         15427.08,
 730         9815.94,
 731         9361.99,
 732         26447.38,
 733         5675.32,
 734         714.5,
 735         5543.04,
 736         11029.13,
 737         2194.33,
 738         3780.32,
 739         208.79,
 740         6935.59,
 741         2377.83,
 742         975.18,
 743         1056.15,
 744         3225.9,
 745     ],
 746     2010: [
 747         3388.38,
 748         4840.23,
 749         10707.68,
 750         5234,
 751         6367.69,
 752         9976.82,
 753         4506.31,
 754         5025.15,
 755         7218.32,
 756         21753.93,
 757         14297.93,
 758         6436.62,
 759         7522.83,
 760         5122.88,
 761         21238.49,
 762         13226.38,
 763         7767.24,
 764         7343.19,
 765         23014.53,
 766         4511.68,
 767         571,
 768         4359.12,
 769         8672.18,
 770         1800.06,
 771         3223.49,
 772         163.92,
 773         5446.1,
 774         1984.97,
 775         744.63,
 776         827.91,
 777         2592.15,
 778     ],
 779     2009: [
 780         2855.55,
 781         3987.84,
 782         8959.83,
 783         3993.8,
 784         5114,
 785         7906.34,
 786         3541.92,
 787         4060.72,
 788         6001.78,
 789         18566.37,
 790         11908.49,
 791         4905.22,
 792         6005.3,
 793         3919.45,
 794         18901.83,
 795         11010.5,
 796         6038.08,
 797         5687.19,
 798         19419.7,
 799         3381.54,
 800         443.43,
 801         3448.77,
 802         6711.87,
 803         1476.62,
 804         2582.53,
 805         136.63,
 806         4236.42,
 807         1527.24,
 808         575.33,
 809         662.32,
 810         1929.59,
 811     ],
 812     2008: [
 813         2626.41,
 814         3709.78,
 815         8701.34,
 816         4242.36,
 817         4376.19,
 818         7158.84,
 819         3097.12,
 820         4319.75,
 821         6085.84,
 822         16993.34,
 823         11567.42,
 824         4198.93,
 825         5318.44,
 826         3554.81,
 827         17571.98,
 828         10259.99,
 829         5082.07,
 830         5028.93,
 831         18502.2,
 832         3037.74,
 833         423.55,
 834         3057.78,
 835         5823.39,
 836         1370.03,
 837         2452.75,
 838         115.56,
 839         3861.12,
 840         1470.34,
 841         557.12,
 842         609.98,
 843         2070.76,
 844     ],
 845     2007: [
 846         2509.4,
 847         2892.53,
 848         7201.88,
 849         3454.49,
 850         3193.67,
 851         5544.14,
 852         2475.45,
 853         3695.58,
 854         5571.06,
 855         14471.26,
 856         10154.25,
 857         3370.96,
 858         4476.42,
 859         2975.53,
 860         14647.53,
 861         8282.83,
 862         4143.06,
 863         3977.72,
 864         16004.61,
 865         2425.29,
 866         364.26,
 867         2368.53,
 868         4648.79,
 869         1124.79,
 870         2038.39,
 871         98.48,
 872         2986.46,
 873         1279.32,
 874         419.03,
 875         455.04,
 876         1647.55,
 877     ],
 878     2006: [
 879         2191.43,
 880         2457.08,
 881         6110.43,
 882         2755.66,
 883         2374.96,
 884         4566.83,
 885         1915.29,
 886         3365.31,
 887         4969.95,
 888         12282.89,
 889         8511.51,
 890         2711.18,
 891         3695.04,
 892         2419.74,
 893         12574.03,
 894         6724.61,
 895         3365.08,
 896         3187.05,
 897         13469.77,
 898         1878.56,
 899         308.62,
 900         1871.65,
 901         3775.14,
 902         967.54,
 903         1705.83,
 904         80.1,
 905         2452.44,
 906         1043.19,
 907         331.91,
 908         351.58,
 909         1459.3,
 910     ],
 911     2005: [
 912         2026.51,
 913         2135.07,
 914         5271.57,
 915         2357.04,
 916         1773.21,
 917         3869.4,
 918         1580.83,
 919         2971.68,
 920         4381.2,
 921         10524.96,
 922         7164.75,
 923         2245.9,
 924         3175.92,
 925         1917.47,
 926         10478.62,
 927         5514.14,
 928         2852.12,
 929         2612.57,
 930         11356.6,
 931         1510.68,
 932         240.83,
 933         1564,
 934         3067.23,
 935         821.16,
 936         1426.42,
 937         63.52,
 938         1951.36,
 939         838.56,
 940         264.61,
 941         281.05,
 942         1164.79,
 943     ],
 944     2004: [
 945         1853.58,
 946         1685.93,
 947         4301.73,
 948         1919.4,
 949         1248.27,
 950         3061.62,
 951         1329.68,
 952         2487.04,
 953         3892.12,
 954         8437.99,
 955         6250.38,
 956         1844.9,
 957         2770.49,
 958         1566.4,
 959         8478.69,
 960         4182.1,
 961         2320.6,
 962         2190.54,
 963         9280.73,
 964         1253.7,
 965         205.6,
 966         1376.91,
 967         2489.4,
 968         681.5,
 969         1281.63,
 970         52.74,
 971         1553.1,
 972         713.3,
 973         211.7,
 974         244.05,
 975         914.47,
 976     ],
 977     2003: [
 978         1487.15,
 979         1337.31,
 980         3417.56,
 981         1463.38,
 982         967.49,
 983         2898.89,
 984         1098.37,
 985         2084.7,
 986         3209.02,
 987         6787.11,
 988         5096.38,
 989         1535.29,
 990         2340.82,
 991         1204.33,
 992         6485.05,
 993         3310.14,
 994         1956.02,
 995         1777.74,
 996         7592.78,
 997         984.08,
 998         175.82,
 999         1135.31,
1000         2014.8,
1001         569.37,
1002         1047.66,
1003         47.64,
1004         1221.17,
1005         572.02,
1006         171.92,
1007         194.27,
1008         719.54,
1009     ],
1010     2002: [
1011         1249.99,
1012         1069.08,
1013         2911.69,
1014         1134.31,
1015         754.78,
1016         2609.85,
1017         943.49,
1018         1843.6,
1019         2622.45,
1020         5604.49,
1021         4090.48,
1022         1337.04,
1023         2036.97,
1024         941.77,
1025         5184.98,
1026         2768.75,
1027         1709.89,
1028         1523.5,
1029         6143.4,
1030         846.89,
1031         148.88,
1032         958.87,
1033         1733.38,
1034         481.96,
1035         934.88,
1036         32.72,
1037         1007.56,
1038         501.69,
1039         144.51,
1040         153.06,
1041         603.15,
1042     ],
1043 }
1044 
1045 data_ti = {
1046     2011: [
1047         12363.18,
1048         5219.24,
1049         8483.17,
1050         3960.87,
1051         5015.89,
1052         8158.98,
1053         3679.91,
1054         4918.09,
1055         11142.86,
1056         20842.21,
1057         14180.23,
1058         4975.96,
1059         6878.74,
1060         3921.2,
1061         17370.89,
1062         7991.72,
1063         7247.02,
1064         7539.54,
1065         24097.7,
1066         3998.33,
1067         1148.93,
1068         3623.81,
1069         7014.04,
1070         2781.29,
1071         3701.79,
1072         322.57,
1073         4355.81,
1074         1963.79,
1075         540.18,
1076         861.92,
1077         2245.12,
1078     ],
1079     2010: [
1080         10600.84,
1081         4238.65,
1082         7123.77,
1083         3412.38,
1084         4209.03,
1085         6849.37,
1086         3111.12,
1087         4040.55,
1088         9833.51,
1089         17131.45,
1090         12063.82,
1091         4193.69,
1092         5850.62,
1093         3121.4,
1094         14343.14,
1095         6607.89,
1096         6053.37,
1097         6369.27,
1098         20711.55,
1099         3383.11,
1100         953.67,
1101         2881.08,
1102         6030.41,
1103         2177.07,
1104         2892.31,
1105         274.82,
1106         3688.93,
1107         1536.5,
1108         470.88,
1109         702.45,
1110         1766.69,
1111     ],
1112     2009: [
1113         9179.19,
1114         3405.16,
1115         6068.31,
1116         2886.92,
1117         3696.65,
1118         5891.25,
1119         2756.26,
1120         3371.95,
1121         8930.85,
1122         13629.07,
1123         9918.78,
1124         3662.15,
1125         5048.49,
1126         2637.07,
1127         11768.18,
1128         5700.91,
1129         5127.12,
1130         5402.81,
1131         18052.59,
1132         2919.13,
1133         748.59,
1134         2474.44,
1135         5198.8,
1136         1885.79,
1137         2519.62,
1138         240.85,
1139         3143.74,
1140         1363.27,
1141         398.54,
1142         563.74,
1143         1587.72,
1144     ],
1145     2008: [
1146         8375.76,
1147         2886.65,
1148         5276.04,
1149         2759.46,
1150         3212.06,
1151         5207.72,
1152         2412.26,
1153         2905.68,
1154         7872.23,
1155         11888.53,
1156         8799.31,
1157         3234.64,
1158         4346.4,
1159         2355.86,
1160         10358.64,
1161         5099.76,
1162         4466.85,
1163         4633.67,
1164         16321.46,
1165         2529.51,
1166         643.47,
1167         2160.48,
1168         4561.69,
1169         1652.34,
1170         2218.81,
1171         218.67,
1172         2699.74,
1173         1234.21,
1174         355.93,
1175         475,
1176         1421.38,
1177     ],
1178     2007: [
1179         7236.15,
1180         2250.04,
1181         4600.72,
1182         2257.99,
1183         2467.41,
1184         4486.74,
1185         2025.44,
1186         2493.04,
1187         6821.11,
1188         9730.91,
1189         7613.46,
1190         2789.78,
1191         3770,
1192         1918.95,
1193         8620.24,
1194         4511.97,
1195         3812.34,
1196         3835.4,
1197         14076.83,
1198         2156.76,
1199         528.84,
1200         1825.21,
1201         3881.6,
1202         1312.94,
1203         1896.78,
1204         188.06,
1205         2178.2,
1206         1037.11,
1207         294.91,
1208         366.18,
1209         1246.89,
1210     ],
1211     2006: [
1212         5837.55,
1213         1902.31,
1214         3895.36,
1215         1846.18,
1216         1934.35,
1217         3798.26,
1218         1687.07,
1219         2096.35,
1220         5508.48,
1221         7914.11,
1222         6281.86,
1223         2390.29,
1224         3022.83,
1225         1614.65,
1226         7187.26,
1227         3721.44,
1228         3111.98,
1229         3229.42,
1230         11585.82,
1231         1835.12,
1232         433.57,
1233         1649.2,
1234         3319.62,
1235         989.38,
1236         1557.91,
1237         159.76,
1238         1806.36,
1239         900.16,
1240         249.04,
1241         294.78,
1242         1058.16,
1243     ],
1244     2005: [
1245         4854.33,
1246         1658.19,
1247         3340.54,
1248         1611.07,
1249         1542.26,
1250         3295.45,
1251         1413.83,
1252         1857.42,
1253         4776.2,
1254         6612.22,
1255         5360.1,
1256         2137.77,
1257         2551.41,
1258         1411.92,
1259         5924.74,
1260         3181.27,
1261         2655.94,
1262         2882.88,
1263         9772.5,
1264         1560.92,
1265         377.17,
1266         1440.32,
1267         2836.73,
1268         815.32,
1269         1374.62,
1270         137.24,
1271         1546.59,
1272         787.36,
1273         213.37,
1274         259.49,
1275         929.41,
1276     ],
1277     2004: [
1278         4092.27,
1279         1319.76,
1280         2805.47,
1281         1375.67,
1282         1270,
1283         2811.95,
1284         1223.64,
1285         1657.77,
1286         4097.26,
1287         5198.03,
1288         4584.22,
1289         1963.9,
1290         2206.02,
1291         1225.8,
1292         4764.7,
1293         2722.4,
1294         2292.55,
1295         2428.95,
1296         8335.3,
1297         1361.92,
1298         335.3,
1299         1229.62,
1300         2510.3,
1301         661.8,
1302         1192.53,
1303         123.3,
1304         1234.6,
1305         688.41,
1306         193.7,
1307         227.73,
1308         833.36,
1309     ],
1310     2003: [
1311         3435.95,
1312         1150.81,
1313         2439.68,
1314         1176.65,
1315         1000.79,
1316         2487.85,
1317         1075.48,
1318         1467.9,
1319         3404.19,
1320         4493.31,
1321         3890.79,
1322         1638.42,
1323         1949.91,
1324         1043.08,
1325         4112.43,
1326         2358.86,
1327         2003.08,
1328         1995.78,
1329         7178.94,
1330         1178.25,
1331         293.85,
1332         1081.35,
1333         2189.68,
1334         558.28,
1335         1013.76,
1336         96.76,
1337         1063.89,
1338         589.91,
1339         169.81,
1340         195.46,
1341         753.91,
1342     ],
1343     2002: [
1344         2982.57,
1345         997.47,
1346         2149.75,
1347         992.69,
1348         811.47,
1349         2258.17,
1350         958.88,
1351         1319.4,
1352         3038.9,
1353         3891.92,
1354         3227.99,
1355         1399.02,
1356         1765.8,
1357         972.73,
1358         3700.52,
1359         1978.37,
1360         1795.93,
1361         1780.79,
1362         6343.94,
1363         1074.85,
1364         270.96,
1365         956.12,
1366         1943.68,
1367         480.37,
1368         914.5,
1369         89.56,
1370         963.62,
1371         514.83,
1372         148.83,
1373         171.14,
1374         704.5,
1375     ],
1376 }
1377 
1378 data_estate = {
1379     2011: [
1380         12363.18,
1381         5219.24,
1382         8483.17,
1383         3960.87,
1384         5015.89,
1385         8158.98,
1386         3679.91,
1387         4918.09,
1388         11142.86,
1389         20842.21,
1390         14180.23,
1391         4975.96,
1392         6878.74,
1393         3921.2,
1394         17370.89,
1395         7991.72,
1396         7247.02,
1397         7539.54,
1398         24097.7,
1399         3998.33,
1400         1148.93,
1401         3623.81,
1402         7014.04,
1403         2781.29,
1404         3701.79,
1405         322.57,
1406         4355.81,
1407         1963.79,
1408         540.18,
1409         861.92,
1410         2245.12,
1411     ],
1412     2010: [
1413         10600.84,
1414         4238.65,
1415         7123.77,
1416         3412.38,
1417         4209.03,
1418         6849.37,
1419         3111.12,
1420         4040.55,
1421         9833.51,
1422         17131.45,
1423         12063.82,
1424         4193.69,
1425         5850.62,
1426         3121.4,
1427         14343.14,
1428         6607.89,
1429         6053.37,
1430         6369.27,
1431         20711.55,
1432         3383.11,
1433         953.67,
1434         2881.08,
1435         6030.41,
1436         2177.07,
1437         2892.31,
1438         274.82,
1439         3688.93,
1440         1536.5,
1441         470.88,
1442         702.45,
1443         1766.69,
1444     ],
1445     2009: [
1446         9179.19,
1447         3405.16,
1448         6068.31,
1449         2886.92,
1450         3696.65,
1451         5891.25,
1452         2756.26,
1453         3371.95,
1454         8930.85,
1455         13629.07,
1456         9918.78,
1457         3662.15,
1458         5048.49,
1459         2637.07,
1460         11768.18,
1461         5700.91,
1462         5127.12,
1463         5402.81,
1464         18052.59,
1465         2919.13,
1466         748.59,
1467         2474.44,
1468         5198.8,
1469         1885.79,
1470         2519.62,
1471         240.85,
1472         3143.74,
1473         1363.27,
1474         398.54,
1475         563.74,
1476         1587.72,
1477     ],
1478     2008: [
1479         8375.76,
1480         2886.65,
1481         5276.04,
1482         2759.46,
1483         3212.06,
1484         5207.72,
1485         2412.26,
1486         2905.68,
1487         7872.23,
1488         11888.53,
1489         8799.31,
1490         3234.64,
1491         4346.4,
1492         2355.86,
1493         10358.64,
1494         5099.76,
1495         4466.85,
1496         4633.67,
1497         16321.46,
1498         2529.51,
1499         643.47,
1500         2160.48,
1501         4561.69,
1502         1652.34,
1503         2218.81,
1504         218.67,
1505         2699.74,
1506         1234.21,
1507         355.93,
1508         475,
1509         1421.38,
1510     ],
1511     2007: [
1512         7236.15,
1513         2250.04,
1514         4600.72,
1515         2257.99,
1516         2467.41,
1517         4486.74,
1518         2025.44,
1519         2493.04,
1520         6821.11,
1521         9730.91,
1522         7613.46,
1523         2789.78,
1524         3770,
1525         1918.95,
1526         8620.24,
1527         4511.97,
1528         3812.34,
1529         3835.4,
1530         14076.83,
1531         2156.76,
1532         528.84,
1533         1825.21,
1534         3881.6,
1535         1312.94,
1536         1896.78,
1537         188.06,
1538         2178.2,
1539         1037.11,
1540         294.91,
1541         366.18,
1542         1246.89,
1543     ],
1544     2006: [
1545         5837.55,
1546         1902.31,
1547         3895.36,
1548         1846.18,
1549         1934.35,
1550         3798.26,
1551         1687.07,
1552         2096.35,
1553         5508.48,
1554         7914.11,
1555         6281.86,
1556         2390.29,
1557         3022.83,
1558         1614.65,
1559         7187.26,
1560         3721.44,
1561         3111.98,
1562         3229.42,
1563         11585.82,
1564         1835.12,
1565         433.57,
1566         1649.2,
1567         3319.62,
1568         989.38,
1569         1557.91,
1570         159.76,
1571         1806.36,
1572         900.16,
1573         249.04,
1574         294.78,
1575         1058.16,
1576     ],
1577     2005: [
1578         4854.33,
1579         1658.19,
1580         3340.54,
1581         1611.07,
1582         1542.26,
1583         3295.45,
1584         1413.83,
1585         1857.42,
1586         4776.2,
1587         6612.22,
1588         5360.1,
1589         2137.77,
1590         2551.41,
1591         1411.92,
1592         5924.74,
1593         3181.27,
1594         2655.94,
1595         2882.88,
1596         9772.5,
1597         1560.92,
1598         377.17,
1599         1440.32,
1600         2836.73,
1601         815.32,
1602         1374.62,
1603         137.24,
1604         1546.59,
1605         787.36,
1606         213.37,
1607         259.49,
1608         929.41,
1609     ],
1610     2004: [
1611         4092.27,
1612         1319.76,
1613         2805.47,
1614         1375.67,
1615         1270,
1616         2811.95,
1617         1223.64,
1618         1657.77,
1619         4097.26,
1620         5198.03,
1621         4584.22,
1622         1963.9,
1623         2206.02,
1624         1225.8,
1625         4764.7,
1626         2722.4,
1627         2292.55,
1628         2428.95,
1629         8335.3,
1630         1361.92,
1631         335.3,
1632         1229.62,
1633         2510.3,
1634         661.8,
1635         1192.53,
1636         123.3,
1637         1234.6,
1638         688.41,
1639         193.7,
1640         227.73,
1641         833.36,
1642     ],
1643     2003: [
1644         3435.95,
1645         1150.81,
1646         2439.68,
1647         1176.65,
1648         1000.79,
1649         2487.85,
1650         1075.48,
1651         1467.9,
1652         3404.19,
1653         4493.31,
1654         3890.79,
1655         1638.42,
1656         1949.91,
1657         1043.08,
1658         4112.43,
1659         2358.86,
1660         2003.08,
1661         1995.78,
1662         7178.94,
1663         1178.25,
1664         293.85,
1665         1081.35,
1666         2189.68,
1667         558.28,
1668         1013.76,
1669         96.76,
1670         1063.89,
1671         589.91,
1672         169.81,
1673         195.46,
1674         753.91,
1675     ],
1676     2002: [
1677         2982.57,
1678         997.47,
1679         2149.75,
1680         992.69,
1681         811.47,
1682         2258.17,
1683         958.88,
1684         1319.4,
1685         3038.9,
1686         3891.92,
1687         3227.99,
1688         1399.02,
1689         1765.8,
1690         972.73,
1691         3700.52,
1692         1978.37,
1693         1795.93,
1694         1780.79,
1695         6343.94,
1696         1074.85,
1697         270.96,
1698         956.12,
1699         1943.68,
1700         480.37,
1701         914.5,
1702         89.56,
1703         963.62,
1704         514.83,
1705         148.83,
1706         171.14,
1707         704.5,
1708     ],
1709 }
1710 
1711 data_financial = {
1712     2011: [
1713         12363.18,
1714         5219.24,
1715         8483.17,
1716         3960.87,
1717         5015.89,
1718         8158.98,
1719         3679.91,
1720         4918.09,
1721         11142.86,
1722         20842.21,
1723         14180.23,
1724         4975.96,
1725         6878.74,
1726         3921.2,
1727         17370.89,
1728         7991.72,
1729         7247.02,
1730         7539.54,
1731         24097.7,
1732         3998.33,
1733         1148.93,
1734         3623.81,
1735         7014.04,
1736         2781.29,
1737         3701.79,
1738         322.57,
1739         4355.81,
1740         1963.79,
1741         540.18,
1742         861.92,
1743         2245.12,
1744     ],
1745     2010: [
1746         10600.84,
1747         4238.65,
1748         7123.77,
1749         3412.38,
1750         4209.03,
1751         6849.37,
1752         3111.12,
1753         4040.55,
1754         9833.51,
1755         17131.45,
1756         12063.82,
1757         4193.69,
1758         5850.62,
1759         3121.4,
1760         14343.14,
1761         6607.89,
1762         6053.37,
1763         6369.27,
1764         20711.55,
1765         3383.11,
1766         953.67,
1767         2881.08,
1768         6030.41,
1769         2177.07,
1770         2892.31,
1771         274.82,
1772         3688.93,
1773         1536.5,
1774         470.88,
1775         702.45,
1776         1766.69,
1777     ],
1778     2009: [
1779         9179.19,
1780         3405.16,
1781         6068.31,
1782         2886.92,
1783         3696.65,
1784         5891.25,
1785         2756.26,
1786         3371.95,
1787         8930.85,
1788         13629.07,
1789         9918.78,
1790         3662.15,
1791         5048.49,
1792         2637.07,
1793         11768.18,
1794         5700.91,
1795         5127.12,
1796         5402.81,
1797         18052.59,
1798         2919.13,
1799         748.59,
1800         2474.44,
1801         5198.8,
1802         1885.79,
1803         2519.62,
1804         240.85,
1805         3143.74,
1806         1363.27,
1807         398.54,
1808         563.74,
1809         1587.72,
1810     ],
1811     2008: [
1812         8375.76,
1813         2886.65,
1814         5276.04,
1815         2759.46,
1816         3212.06,
1817         5207.72,
1818         2412.26,
1819         2905.68,
1820         7872.23,
1821         11888.53,
1822         8799.31,
1823         3234.64,
1824         4346.4,
1825         2355.86,
1826         10358.64,
1827         5099.76,
1828         4466.85,
1829         4633.67,
1830         16321.46,
1831         2529.51,
1832         643.47,
1833         2160.48,
1834         4561.69,
1835         1652.34,
1836         2218.81,
1837         218.67,
1838         2699.74,
1839         1234.21,
1840         355.93,
1841         475,
1842         1421.38,
1843     ],
1844     2007: [
1845         7236.15,
1846         2250.04,
1847         4600.72,
1848         2257.99,
1849         2467.41,
1850         4486.74,
1851         2025.44,
1852         2493.04,
1853         6821.11,
1854         9730.91,
1855         7613.46,
1856         2789.78,
1857         3770,
1858         1918.95,
1859         8620.24,
1860         4511.97,
1861         3812.34,
1862         3835.4,
1863         14076.83,
1864         2156.76,
1865         528.84,
1866         1825.21,
1867         3881.6,
1868         1312.94,
1869         1896.78,
1870         188.06,
1871         2178.2,
1872         1037.11,
1873         294.91,
1874         366.18,
1875         1246.89,
1876     ],
1877     2006: [
1878         5837.55,
1879         1902.31,
1880         3895.36,
1881         1846.18,
1882         1934.35,
1883         3798.26,
1884         1687.07,
1885         2096.35,
1886         5508.48,
1887         7914.11,
1888         6281.86,
1889         2390.29,
1890         3022.83,
1891         1614.65,
1892         7187.26,
1893         3721.44,
1894         3111.98,
1895         3229.42,
1896         11585.82,
1897         1835.12,
1898         433.57,
1899         1649.2,
1900         3319.62,
1901         989.38,
1902         1557.91,
1903         159.76,
1904         1806.36,
1905         900.16,
1906         249.04,
1907         294.78,
1908         1058.16,
1909     ],
1910     2005: [
1911         4854.33,
1912         1658.19,
1913         3340.54,
1914         1611.07,
1915         1542.26,
1916         3295.45,
1917         1413.83,
1918         1857.42,
1919         4776.2,
1920         6612.22,
1921         5360.1,
1922         2137.77,
1923         2551.41,
1924         1411.92,
1925         5924.74,
1926         3181.27,
1927         2655.94,
1928         2882.88,
1929         9772.5,
1930         1560.92,
1931         377.17,
1932         1440.32,
1933         2836.73,
1934         815.32,
1935         1374.62,
1936         137.24,
1937         1546.59,
1938         787.36,
1939         213.37,
1940         259.49,
1941         929.41,
1942     ],
1943     2004: [
1944         4092.27,
1945         1319.76,
1946         2805.47,
1947         1375.67,
1948         1270,
1949         2811.95,
1950         1223.64,
1951         1657.77,
1952         4097.26,
1953         5198.03,
1954         4584.22,
1955         1963.9,
1956         2206.02,
1957         1225.8,
1958         4764.7,
1959         2722.4,
1960         2292.55,
1961         2428.95,
1962         8335.3,
1963         1361.92,
1964         335.3,
1965         1229.62,
1966         2510.3,
1967         661.8,
1968         1192.53,
1969         123.3,
1970         1234.6,
1971         688.41,
1972         193.7,
1973         227.73,
1974         833.36,
1975     ],
1976     2003: [
1977         3435.95,
1978         1150.81,
1979         2439.68,
1980         1176.65,
1981         1000.79,
1982         2487.85,
1983         1075.48,
1984         1467.9,
1985         3404.19,
1986         4493.31,
1987         3890.79,
1988         1638.42,
1989         1949.91,
1990         1043.08,
1991         4112.43,
1992         2358.86,
1993         2003.08,
1994         1995.78,
1995         7178.94,
1996         1178.25,
1997         293.85,
1998         1081.35,
1999         2189.68,
2000         558.28,
2001         1013.76,
2002         96.76,
2003         1063.89,
2004         589.91,
2005         169.81,
2006         195.46,
2007         753.91,
2008     ],
2009     2002: [
2010         2982.57,
2011         997.47,
2012         2149.75,
2013         992.69,
2014         811.47,
2015         2258.17,
2016         958.88,
2017         1319.4,
2018         3038.9,
2019         3891.92,
2020         3227.99,
2021         1399.02,
2022         1765.8,
2023         972.73,
2024         3700.52,
2025         1978.37,
2026         1795.93,
2027         1780.79,
2028         6343.94,
2029         1074.85,
2030         270.96,
2031         956.12,
2032         1943.68,
2033         480.37,
2034         914.5,
2035         89.56,
2036         963.62,
2037         514.83,
2038         148.83,
2039         171.14,
2040         704.5,
2041     ],
2042 }
2043 
2044 
2045 def format_data(data: dict) -> dict:
2046     for year in range(2002, 2012):
2047         max_data, sum_data = 0, 0
2048         temp = data[year]
2049         max_data = max(temp)
2050         for i in range(len(temp)):
2051             sum_data += temp[i]
2052             data[year][i] = {"name": name_list[i], "value": temp[i]}
2053         data[str(year) + "max"] = int(max_data / 100) * 100
2054         data[str(year) + "sum"] = sum_data
2055     return data
2056 
2057 
2058 # GDP
2059 total_data["dataGDP"] = format_data(data=data_gdp)
2060 # 第一产业
2061 total_data["dataPI"] = format_data(data=data_pi)
2062 # 第二产业
2063 total_data["dataSI"] = format_data(data=data_si)
2064 # 第三产业
2065 total_data["dataTI"] = format_data(data=data_ti)
2066 # 房地产
2067 total_data["dataEstate"] = format_data(data=data_estate)
2068 # 金融
2069 total_data["dataFinancial"] = format_data(data=data_financial)
2070 
2071 
2072 #####################################################################################
2073 # 2002 - 2011 年的数据
2074 def get_year_overlap_chart(year: int) -> Bar:
2075     bar = (
2076         Bar()
2077         .add_xaxis(xaxis_data=name_list)
2078         .add_yaxis(
2079             series_name="GDP",
2080             y_axis=total_data["dataGDP"][year], # y_axis= y_data  yaxis_data=total_data["dataGDP"][year]
2081             is_selected=False,
2082             label_opts=opts.LabelOpts(is_show=False),
2083         )
2084         .add_yaxis(
2085             series_name="金融",
2086             y_axis=total_data["dataFinancial"][year], # y_axis= y_data  yaxis_data=total_data["dataFinancial"][year]
2087             is_selected=False,
2088             label_opts=opts.LabelOpts(is_show=False),
2089         )
2090         .add_yaxis(
2091             series_name="房地产",
2092             y_axis=total_data["dataEstate"][year],
2093             is_selected=False,
2094             label_opts=opts.LabelOpts(is_show=False),
2095         )
2096         .add_yaxis(
2097             series_name="第一产业",
2098             y_axis=total_data["dataPI"][year],
2099             label_opts=opts.LabelOpts(is_show=False),
2100         )
2101         .add_yaxis(
2102             series_name="第二产业",
2103             y_axis=total_data["dataSI"][year],
2104             label_opts=opts.LabelOpts(is_show=False),
2105         )
2106         .add_yaxis(
2107             series_name="第三产业",
2108             y_axis=total_data["dataTI"][year],
2109             label_opts=opts.LabelOpts(is_show=False),
2110         )
2111         .set_global_opts(
2112             title_opts=opts.TitleOpts(
2113                 title="{}全国宏观经济指标".format(year), subtitle="数据来自国家统计局"
2114             ),
2115             tooltip_opts=opts.TooltipOpts(
2116                 is_show=True, trigger="axis", axis_pointer_type="shadow"
2117             ),
2118         )
2119     )
2120     pie = (
2121         Pie()
2122         .add(
2123             series_name="GDP占比",
2124             data_pair=[
2125                 ["第一产业", total_data["dataPI"]["{}sum".format(year)]],
2126                 ["第二产业", total_data["dataSI"]["{}sum".format(year)]],
2127                 ["第三产业", total_data["dataTI"]["{}sum".format(year)]],
2128             ],
2129             center=["75%", "35%"],
2130             radius="28%",
2131         )
2132         .set_series_opts(tooltip_opts=opts.TooltipOpts(is_show=True, trigger="item"))
2133     )
2134     return bar.overlap(pie)
2135 
2136 
2137 # 生成时间轴的图
2138 timeline = Timeline(init_opts=opts.InitOpts(width="1600px", height="800px"))
2139 
2140 for y in range(2002, 2012):
2141     timeline.add(get_year_overlap_chart(year=y), time_point=str(y))
2142 
2143 # 1.0.0 版本的 add_schema 暂时没有补上 return self 所以只能这么写着
2144 timeline.add_schema(is_auto_play=True, play_interval=1000)
2145 timeline.render("finance_indices_2002.html")
View Code

 

Bar - Bar_base_dict_config

from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType

c = (
    Bar({"theme": ThemeType.MACARONS})
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts={"text": "Bar-通过 dict 进行配置", "subtext": "我也是通过 dict 进行配置的"}
    )
    .render("bar_base_dict_config.html")
)

 

 

Bar - Bar_with_brush

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Brush示例", subtitle="我是副标题"),
        brush_opts=opts.BrushOpts(),
    )
    .render("bar_with_brush.html")
)

 

Bar - Bar_datazoom_slider

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
        datazoom_opts=opts.DataZoomOpts(),
    )
    .render("bar_datazoom_slider.html")
)

 

 

Bar - Bar_toolbox

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-显示 ToolBox"),
        toolbox_opts=opts.ToolboxOpts(),
        legend_opts=opts.LegendOpts(is_show=False),
    )
    .render("bar_toolbox.html")
)

 

 

Bar - Bar_waterfall_plot

from pyecharts.charts import Bar
from pyecharts import options as opts

x_data = [f"11月{str(i)}日" for i in range(1, 12)]
y_total = [0, 900, 1245, 1530, 1376, 1376, 1511, 1689, 1856, 1495, 1292]
y_in = [900, 345, 393, "-", "-", 135, 178, 286, "-", "-", "-"]
y_out = ["-", "-", "-", 108, 154, "-", "-", "-", 119, 361, 203]


bar = (
    Bar()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="",
        y_axis=y_total,  # y_axis  yaxis_data
        stack="总量",
        itemstyle_opts=opts.ItemStyleOpts(color="rgba(0,0,0,0)"),
    )
    .add_yaxis(series_name="收入", y_axis=y_in, stack="总量")
    .add_yaxis(series_name="支出", y_axis=y_out, stack="总量")
    .set_global_opts(yaxis_opts=opts.AxisOpts(type_="value"))
    .render("bar_waterfall_plot.html")
)

 

 

Bar - Mixed_bar_and_line

import pyecharts.options as opts
from pyecharts.charts import Bar, Line

"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=mix-line-bar

目前无法实现的功能:

1、暂无
"""

x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]

bar = (
    Bar(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="蒸发量",
        y_axis=[  # y_axis  yaxis_data
            2.0,
            4.9,
            7.0,
            23.2,
            25.6,
            76.7,
            135.6,
            162.2,
            32.6,
            20.0,
            6.4,
            3.3,
        ],
        label_opts=opts.LabelOpts(is_show=False),
    )
    .add_yaxis(
        series_name="降水量",
        y_axis=[
            2.6,
            5.9,
            9.0,
            26.4,
            28.7,
            70.7,
            175.6,
            182.2,
            48.7,
            18.8,
            6.0,
            2.3,
        ],
        label_opts=opts.LabelOpts(is_show=False),
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="温度",
            type_="value",
            min_=0,
            max_=25,
            interval=5,
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
        )
    )
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(
            is_show=True, trigger="axis", axis_pointer_type="cross"
        ),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
        ),
        yaxis_opts=opts.AxisOpts(
            name="水量",
            type_="value",
            min_=0,
            max_=250,
            interval=50,
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
    )
)

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="平均温度",
        yaxis_index=1,
        y_axis=[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
        label_opts=opts.LabelOpts(is_show=False),
    )
)

bar.overlap(line).render("mixed_bar_and_line.html")

 

 

Bar - Bar_grahic_component

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Graphic 组件示例"),
        graphic_opts=[
            opts.GraphicGroup(
                graphic_item=opts.GraphicItem(
                    rotation=JsCode("Math.PI / 4"),
                    bounding="raw",
                    right=110,
                    bottom=110,
                    z=100,
                ),
                children=[
                    # opts.GraphicRect(
                    #     graphic_item=opts.GraphicItem(
                    #         left="center", top="center", z=100
                    #     ),
                    #     graphic_shape_opts=opts.GraphicShapeOpts(width=400, height=50),
                    #     graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(
                    #         fill="rgba(0,0,0,0.3)"
                    #     ),
                    # ),
                    # opts.GraphicText(
                    #     graphic_item=opts.GraphicItem(
                    #         left="center", top="center", z=100
                    #     ),
                        # graphic_textstyle_opts=opts.GraphicTextStyleOpts(
                        #     text="pyecharts bar chart",
                        #     font="bold 26px Microsoft YaHei",
                        #     graphic_basicstyle_opts=opts.GraphicBasicStyleOpts(
                        #         fill="#fff"
                        #     ),
                        # ),
                    # ),
                ],
            )
        ],
    )
    .render("bar_graphic_component.html")
)

 

 

Bar - Bar_stack1

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), stack="stack1")
    .add_yaxis("商家B", Faker.values(), stack="stack1")
    .add_yaxis("商家C", Faker.values())
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(部分)"))
    .render("bar_stack1.html")
)

 

Bar - Bar_xyaxis_name

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-XY 轴名称"),
        yaxis_opts=opts.AxisOpts(name="我是 Y 轴"),
        xaxis_opts=opts.AxisOpts(name="我是 X 轴"),
    )
    .render("bar_xyaxis_name.html")
)

 

 

 

Bar - Bar_base_with_custom_background_image

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

c = (
    Bar(
        init_opts=opts.InitOpts(
            bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"}
        )
    )
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="Bar-背景图基本示例",
            subtitle="我是副标题",
            title_textstyle_opts=opts.TextStyleOpts(color="white"),
        )
    )
)
c.add_js_funcs(
    """
    var img = new Image(); img.src = 'https://s2.ax1x.com/2019/07/08/ZsS0fK.jpg';
    """
)
c.render("bar_base_with_custom_background_image.html")

 

 

Bar - Bar_chart_display_delay

import pyecharts.options as opts
from pyecharts.charts import Bar

"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=bar-animation-delay

目前无法实现的功能:

1、动画延迟效果暂时没有加入到代码中
"""

category = ["类目{}".format(i) for i in range(0, 100)]
red_bar = [
    0,
    -8.901463875624668,
    -17.025413764148556,
    -24.038196249566663,
    -29.66504684804471,
    -33.699527649688676,
    -36.00971978255796,
    -36.541005056170455,
    -35.31542466107655,
    -32.427752866005996,
    -28.038563739693934,
    -22.364693082297347,
    -15.667600860943732,
    -8.240217424060843,
    -0.3929067389459173,
    7.560799717904647,
    15.318054209871054,
    22.599523033552096,
    29.16065418543528,
    34.800927952557615,
    39.37074152590451,
    42.77569739999406,
    44.97819140223978,
    45.99632376477021,
    45.900279829731865,
    44.806440199911805,
    42.86957840395034,
    40.2735832137877,
    37.22119936652441,
    33.92331243435557,
    30.588309963978517,
    27.412031986865767,
    24.56878097935778,
    22.203796820272576,
    20.427519715115604,
    19.311867685884827,
    18.888649906111855,
    19.150128087782186,
    20.051630602288828,
    21.516023200879346,
    23.439750867099516,
    25.700091656548704,
    28.163208735293757,
    30.692553648214542,
    33.1571635093161,
    35.439407573791215,
    37.44177367693234,
    39.09234039030659,
    40.34865356244595,
    41.19981246258526,
    41.66666666666667,
    41.80012531240646,
    41.67768039516203,
    41.39834040182826,
    41.07625507973403,
    40.833382300579814,
    40.79160029175877,
    41.06470032034727,
    41.75070457358366,
    42.924940903672564,
    44.63427081999565,
    46.89281122872821,
    49.679416561286956,
    52.93709961387478,
    56.574470884754874,
    60.46917221906629,
    64.47317623531558,
    68.41972346252496,
    72.1315793340836,
    75.43021771943799,
    78.14548044723074,
    80.12522637371026,
    81.24447108408411,
    81.41353029256493,
    80.58471628367427,
    78.75719600392792,
    75.97969924353211,
    72.35086229880064,
    68.01710226438443,
    63.16803467673056,
    58.029567166714706,
    52.854918421647554,
    47.91391949819902,
    43.48104807503482,
    39.82272085822884,
    37.18442111754884,
    35.778264289169215,
    35.77160292258658,
    37.27724241244461,
    40.345781666728996,
    44.96051012913295,
    51.035187614675685,
    58.41491053964701,
    66.8801325453253,
    76.15376513468516,
    85.91114110149952,
    95.79248672571518,
    105.41742429574506,
    114.40092042993717,
    122.37001313784816,
]
blue_bar = [
    -50,
    -47.18992898088751,
    -42.54426104547181,
    -36.290773900754886,
    -28.71517529663627,
    -20.146937097399626,
    -10.94374119697364,
    -1.4752538113770308,
    7.893046603320797,
    16.81528588241657,
    24.979206795219028,
    32.11821023962515,
    38.02096119056733,
    42.53821720798438,
    45.58667093073836,
    47.14973738101559,
    47.275355710354944,
    46.07100702178889,
    43.6962693226927,
    40.35333240268025,
    36.275975292575026,
    31.71756381888028,
    26.938653692729076,
    22.194784893913152,
    17.725026430574392,
    13.741778696752679,
    10.422266555457615,
    7.902063853319403,
    6.270884006107842,
    5.570756810898967,
    5.796594266992678,
    6.899033489892203,
    8.7893381290192,
    11.346045936704996,
    14.42297348773613,
    17.858132851517098,
    21.483081596548438,
    25.132218074866262,
    28.651548555679597,
    31.906490373810854,
    34.788333671419466,
    37.21906041552118,
    39.154309232933485,
    40.58437366457342,
    41.5332247510366,
    42.05565130942339,
    42.23270781895,
    42.165745792772285,
    41.969375711588256,
    41.76375960543808,
    41.66666666666667,
    41.7857343479728,
    42.21136481847887,
    43.01065209435119,
    44.22268037417866,
    45.855461823273586,
    47.88469584957917,
    50.25443606443524,
    52.879650371477126,
    55.650558977584225,
    58.43853958732492,
    61.10330341815434,
    63.500974294013034,
    65.49264961151306,
    66.95298925309743,
    67.77836838841961,
    67.89414332224722,
    67.26061575374229,
    65.87733853082335,
    63.785482681031894,
    61.068077697490004,
    57.84804048526095,
    54.284018163297375,
    50.564180830851214,
    46.89820707575337,
    43.50780217852947,
    40.616171775045245,
    38.4369379107128,
    37.16302649485318,
    36.95607267600796,
    37.93688225696513,
    40.17745279877072,
    43.694998595987045,
    48.44834150353593,
    54.33692802801367,
    61.20261650152743,
    68.83425165632042,
    76.97491319735354,
    85.33159602026458,
    93.58695857541488,
    101.4126683297632,
    108.48378461530217,
    114.49355390682695,
    119.16795429637915,
    122.27931702317058,
    123.65837448506679,
    123.20413594805603,
    120.89107255501017,
    116.7731992576505,
    110.98476877890735,
]


(
    Bar(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=category)
    .add_yaxis(
        series_name="bar", y_axis=red_bar, label_opts=opts.LabelOpts(is_show=False) # y_axis  yaxis_data
    )
    .add_yaxis(
        series_name="bar2",
        y_axis=blue_bar,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="柱状图动画延迟"),
        xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
    )
    .render("bar_chart_display_delay.html")
)

  

Bar - Bar_datazoom_slider_vertical

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-垂直)"),
        datazoom_opts=opts.DataZoomOpts(orient="vertical"),
    )
    .render("bar_datazoom_slider_vertical.html")
)

 

 

Bar - Bar_histogram_color

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


x = Faker.dogs + Faker.animal
xlen = len(x)
y = []
for idx, item in enumerate(x):
    if idx <= xlen / 2:
        y.append(
            opts.BarItem(
                name=item,
                value=(idx + 1) * 10,
                itemstyle_opts=opts.ItemStyleOpts(color="#749f83"),
            )
        )
    else:
        y.append(
            opts.BarItem(
                name=item,
                value=(xlen + 1 - idx) * 10,
                itemstyle_opts=opts.ItemStyleOpts(color="#d48265"),
            )
        )

c = (
    Bar()
    .add_xaxis(x)
    .add_yaxis("series0", y, category_gap=0, color=Faker.rand_color())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图(颜色区分)"))
    .render("bar_histogram_color.html")
)

 

 

 

Bar - Bar_yaxis_formatter

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-Y 轴 formatter"),
        yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} /月")),
    )
    .render("bar_yaxis_formatter.html")
)

 

 

Bar - Bar_markpoint_type

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkPoint(指定类型)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
                opts.MarkPointItem(type_="average", name="平均值"),
            ]
        ),
    )
    .render("bar_markpoint_type.html")
)

 

 

Bar - Multiple_y_axes

import pyecharts.options as opts
from pyecharts.charts import Bar, Line

"""
Gallery 使用 pyecharts 1.0.0
参考地址: https://www.echartsjs.com/examples/editor.html?c=multiple-y-axis

目前无法实现的功能:

1、暂无
"""

colors = ["#5793f3", "#d14a61", "#675bba"]
x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]
legend_list = ["蒸发量", "降水量", "平均温度"]
evaporation_capacity = [
    2.0,
    4.9,
    7.0,
    23.2,
    25.6,
    76.7,
    135.6,
    162.2,
    32.6,
    20.0,
    6.4,
    3.3,
]
rainfall_capacity = [
    2.6,
    5.9,
    9.0,
    26.4,
    28.7,
    70.7,
    175.6,
    182.2,
    48.7,
    18.8,
    6.0,
    2.3,
]
average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]

bar = (
    Bar(init_opts=opts.InitOpts(width="1680px", height="800px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="蒸发量",
        y_axis=evaporation_capacity, # y_axis  yaxis_data
        yaxis_index=0,
        color=colors[1],
    )
    .add_yaxis(
        series_name="降水量", y_axis=rainfall_capacity, yaxis_index=1, color=colors[0]
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            name="蒸发量",
            type_="value",
            min_=0,
            max_=250,
            position="right",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[1])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        )
    )
    .extend_axis(
        yaxis=opts.AxisOpts(
            type_="value",
            name="温度",
            min_=0,
            max_=25,
            position="left",
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[2])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
            ),
        )
    )
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            type_="value",
            name="降水量",
            min_=0,
            max_=250,
            position="right",
            offset=80,
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(color=colors[0])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
        ),
        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
    )
)

line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2]
    )
)

bar.overlap(line).render("multiple_y_axes.html")

 

 

Bar - Bar_custom_bar_color

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker


color_function = """
        function (params) {
            if (params.value > 0 && params.value < 50) {
                return 'red';
            } else if (params.value > 50 && params.value < 100) {
                return 'blue';
            }
            return 'green';
        }
        """
c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis(
        "商家A",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)),
    )
    .add_yaxis(
        "商家B",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)),
    )
    .add_yaxis(
        "商家C",
        Faker.values(),
        itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-自定义柱状颜色"))
    .render("bar_custom_bar_color.html")
)

 

 

Bar - Bar_different_series_gap

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), gap="0%")
    .add_yaxis("商家B", Faker.values(), gap="0%")
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-不同系列柱间距离"))
    .render("bar_different_series_gap.html")
)

 

 

Bar - Bar_markline_type

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkLine(指定类型)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
    .render("bar_markline_type.html")
)

 

 

Bar - Bar_border_radius

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), category_gap="60%")
    .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "barBorderRadius": [30, 30, 30, 30],
                "shadowColor": "rgb(0, 160, 221)",
            }
        }
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-渐变圆柱"))
    .render("bar_border_radius.html")
)

 

 

Bar - Bar_same_series_gap

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), category_gap="80%")
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-单系列柱间距离"))
    .render("bar_same_series_gap.html")
)

 

 

Bar - Bar_datazoom_inside

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(inside)"),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),
    )
    .render("bar_datazoom_inside.html")
)

 

posted @ 2020-11-16 16:11  Binzichen  阅读(895)  评论(0编辑  收藏  举报