spring boot集成redis和mongodb实现计步排名
源码url: https://github.com/zhzhair/stepsrank-spring-boot.git。
1.创建32个分表,用定时任务插入计步数据模拟用户上传步数;
2.项目启动初始化:将32个表的前200名记录插入mongodb的一个集合(表),清空后插入前200名记录,
并将第200名的步数(阈值)放到redis;
3.上传步数时,当用户的步数大于阈值时,就插入mongodb,否则不插入记录到mongodb;
4.用定时任务每隔10秒删除mongodb表中205名以后的记录;
5.用定时任务每隔1秒更新第200名的步数(阈值)到redis,同时将前200名记录放进redis的队列;
6.查询步数排名先到redis队列,查不到就去mongodb表查。
7.jmeter并发测试看查询性能。
程序设计简述:
技术架构:java8,spring boot2.0.0,mysql,redis,mongodb,mybatis,swagger,jmeter,idea,maven。
(i)添加测试数据:新建32个表,按照用户id对32取模添加测试数据到不同的表,做定时任务,每秒添加或修改300条记录。表包括user_id和步数step_count两个字段,假设手机每隔一段时间传一次累计步数,如果当日用户有记录,就修改用户的步数(增加新的步数),否则直接添加记录。部分代码如下:
@LogForTask
@Scheduled(cron = "0/1 * * * * ?")
public void uploadStep(){//定时任务每秒添加或修改300条记录
IntStream.range(0,300).parallel().forEach(i->stepService.uploadStep(32));
}
(ii)程序设计:在高并发的情况下内存是个问题(out of memory exception!),单个mongodb文档也不能放太多的数据,所以需要设置内存不足就读取磁盘。考虑到第200名的总步数不会减少,并且越往后越“稳定”,所以把它作为阈值就可以给查询的表“瘦身”,从而避免大表排序。
初始化(即启动项目时):需要将32个表的前200名都放到一个mongodb文档,再将文档前200名替换到该bson文档,同时将第200名的步数存到redis里面,部分代码如下:
@Resource
private StepService stepService;
private static StepService service;
@PostConstruct
public void init(){
service = this.stepService;
}
public static void main(String[] args) {
SpringApplication.run(StepsApplication.class, args);
//启动项目初始化排名
service.recordTopAll(32);
}
@Override
public void recordTopAll(int tableCount) {
mongoTemplate.dropCollection(StepsTop.class);//删除文档
IntStream.range(0,tableCount).parallel().forEach(this::insertOneTable);//将MySQL的数据插入到mongo文档
/*取出前200名放到list,更新mongo文档的数据为当前list的数据*/
Query query = new Query().with(new Sort(Sort.Direction.DESC,"totalCount")).limit(200);
List<StepsTop> list = mongoTemplate.find(query,StepsTop.class);
if(list.isEmpty()) return;
mongoTemplate.dropCollection(StepsTop.class);
mongoTemplate.insertAll(list);
/*redis保存阈值-第200名的步数*/
int size = Math.min(200,list.size());
redisTemplate.opsForValue().set(redisKey,String.valueOf(list.get(size - 1).getTotalCount()));
}
步数上传:redis的数据做定时任务更新,阈值越来越大,每次都将接收到的步数或更新后的步数与阈值比较,比这个阈值大才会去查mongo,然后对mongo文档做更新或插入操作,这个“比较”会非常频繁,但是redis“不惧怕”高并发,我们不必担心。这样就大大地减少了对mongo文档的操作,确保mongo文档数据量很少,之后查询并排序mongo文档的数据就很快了。部分代码如下:
@Override
public void uploadStep(int tableCount) {
int userId = new Random().nextInt(500_0000);
int stepCount = 1 + new Random().nextInt(5000);
Integer count = commonMapper.getStepCount(prefix + userId%tableCount,userId);
if(count != null){
commonMapper.updateSteps(prefix + userId%tableCount, userId,count + stepCount);
}else{
commonMapper.insertTables(prefix + userId%tableCount, userId, stepCount);
}
String tailSteps = redisTemplate.opsForValue().get(redisKey);
int totalCount = count == null?stepCount:count + stepCount;
if(tailSteps != null && totalCount > Integer.valueOf(tailSteps)){//步数超过阈值就插入或更新用户的记录
Query query = new Query(Criteria.where("userId").is(userId));
if(!mongoTemplate.exists(query,StepsTop.class)){
StepsTop stepsTop = new StepsTop();
stepsTop.setUserId(userId);
stepsTop.setTotalCount(stepCount);
mongoTemplate.insert(stepsTop);
}else{
System.out.println("update: " + tailSteps);
Update update = new Update();
update.set("totalStep",totalCount);
mongoTemplate.upsert(query,update,StepsTop.class);
}
}else{
StepsTop stepsTop = new StepsTop();
stepsTop.setUserId(userId);
stepsTop.setTotalCount(stepCount);
mongoTemplate.insert(stepsTop);
}
}
定时任务:每隔10秒更新一次阈值,同时删除mongo文档中200名以外的数据;每隔1秒从mongo查询排好序的前200名的数据push到redis队列,方便从redis取出排名。部分代码如下:
@Override//更新阈值,删除mongo文档中200名以外的数据
public void flushRankAll() {
// Query query = new Query().with(new Sort(Sort.Direction.DESC,"totalCount")).limit(201);
// List<StepsTop> list = mongoTemplate.find(query,StepsTop.class);//高并发场景下容易出现内存不足异常:out of memory Exception
TypedAggregation<StepsTop> aggregation = Aggregation.newAggregation(
StepsTop.class,
project("userId", "totalCount"),//查询用到的字段
sort(Sort.Direction.DESC,"totalCount"),
limit(200)
).withOptions(newAggregationOptions().allowDiskUse(true).build());//内存不足到磁盘读写,应对高并发
AggregationResults<StepsTop> results = mongoTemplate.aggregate(aggregation, StepsTop.class, StepsTop.class);
List<StepsTop> list = results.getMappedResults();
if(list.size() == 201){
int totalCount = list.get(199).getTotalCount();
Query query1 = new Query(Criteria.where("totalCount").lt(totalCount));
mongoTemplate.remove(query1,StepsTop.class);
}
}
@Override//查询排好序的前200名的数据push到redis队列
public void recordRankAll() {
// Query query = new Query().with(new Sort(Sort.Direction.DESC,"totalCount")).limit(200);
// List<StepsTop> list = mongoTemplate.find(query,StepsTop.class);
TypedAggregation<StepsTop> aggregation = Aggregation.newAggregation(
StepsTop.class,
project("userId", "totalCount"),//查询用到的字段
sort(Sort.Direction.DESC,"totalCount"),
limit(200)
).withOptions(newAggregationOptions().allowDiskUse(true).build());//内存不足到磁盘读写,应对高并发
AggregationResults<StepsTop> results = mongoTemplate.aggregate(aggregation, StepsTop.class, StepsTop.class);
List<StepsTop> list = results.getMappedResults();
if(list.size() == 200){
Integer stepCount = list.get(199).getTotalCount();
redisTemplate.opsForValue().set(redisKey,String.valueOf(stepCount));
}
if(!list.isEmpty()){
redisListTemplate.delete(redisQueueKey);
//noinspection unchecked
redisListTemplate.opsForList().rightPushAll(redisQueueKey,list);
}
}
查询排行榜:现在就简单了,直接到redis队列查询即可,部分代码如下:
@ApiOperation(value = "查询当日总步数排名", notes = "查询当日总步数排名")
@RequestMapping(value = "/getRankAll", method = {RequestMethod.GET}, produces = {MediaType.APPLICATION_JSON_VALUE})
public BaseResponse<List<StepsRankAllResp>> getRankAll(int begin,int pageSize) {
BaseResponse<List<StepsRankAllResp>> baseResponse = new BaseResponse<>();
List<StepsRankAllResp> list = stepService.getRankAllFromRedis(begin,pageSize);
if(list.isEmpty()) list = stepService.getRankAll(begin,pageSize);//redis查不到数据就从Mongo查
baseResponse.setCode(0);
baseResponse.setMsg("返回数据成功");
baseResponse.setData(list);
return baseResponse;
}
@Override//todo 从redis读取
public List<StepsRankAllResp> getRankAllFromRedis(int begin, int pageSize) {
List<StepsTop> stepsList = redisListTemplate.opsForList().range(redisQueueKey,begin,pageSize);
List<StepsRankAllResp> list = new ArrayList<>(stepsList.size());
for (int i = 0; i < stepsList.size(); i++) {
StepsRankAllResp stepsRankAllResp = new StepsRankAllResp();
StepsTop stepsTop = stepsList.get(i);
BeanUtils.copyProperties(stepsTop,stepsRankAllResp);
stepsRankAllResp.setRank(begin + i + 1);
list.add(stepsRankAllResp);
}
return list;
}
jmeter并发测试:访问接口文档--http://localhost:8080/swagger-ui.html/,调接口查询排名,配置调接口5000次,持续5秒,聚合报告如下: