可持久化线段树学习笔记
可持久化线段树,即主席树。
每次修改的时候不修改原来的节点,暴力建新节点,充分运用了函数式编程的思想。
模板题:给定一个数列,\(m\) 次询问求区间 \([l,r]\) 内的第 \(k\) 大。
利用前缀和思想:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
struct node {
int val;
node *lchild, *rchild;
} *rt[MAXN];
int a[MAXN], subA[MAXN], n, m, cnt = 0;
node *newNode(int val, node *lc, node *rc) {
node *ptr = new node;
ptr->lchild = lc; ptr->rchild = rc; ptr->val = val;
return ptr;
}
void build(node *&cur, int l, int r) {
if(l < r) {
cur = newNode(0, NULL, NULL);
int mid = (l + r) >> 1;
build(cur->lchild, l, mid);
build(cur->rchild, mid + 1, r);
} else cur = newNode(0, NULL, NULL);
}
void modify(node *&cur, node *fa, int l, int r, int x) {
cur = newNode(fa->val + 1, fa->lchild, fa->rchild);
if(l != r) {
int mid = (l + r) >> 1;
if(x <= mid) modify(cur->lchild, cur->lchild, l, mid, x);
else modify(cur->rchild, cur->rchild, mid + 1, r, x);
}
}
int query(node *u, node *v, int l, int r, int k) {
if(l == r) return l;
int mid = (l + r) >> 1, lessSize = v->lchild->val - u->lchild->val;
if(lessSize >= k)
return query(u->lchild, v->lchild, l, mid, k);
else return query(u->rchild, v->rchild, mid + 1, r, k - lessSize);
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) {
scanf("%d", a + i);
subA[i] = a[i];
}
sort(subA, subA + n);
int size = unique(subA, subA + n) - subA;
for(int i = 0; i < n; i++)
a[i] = lower_bound(subA, subA + size, a[i]) - subA + 1;
build(rt[cnt++], 1, n);
for(int i = 0; i < n; i++) {
modify(rt[cnt], rt[cnt - 1], 1, n, a[i]);
cnt++;
}
while(m--) {
int x, y, k;
scanf("%d%d%d", &x, &y, &k);
printf("%d\n", subA[query(rt[x - 1], rt[y], 1, n, k) - 1]);
}
return 0;
}