基于keras的卷积神经网络(CNN)
1 前言
本文以MNIST手写数字分类为例,讲解使用一维卷积和二维卷积实现 CNN 模型。关于 MNIST 数据集的说明,见使用TensorFlow实现MNIST数据集分类。实验中主要用到 Conv1D 层、Conv2D 层、MaxPooling1D 层和 MaxPooling2D 层,其参数说明如下:
(1)Conv1D
Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None)
- filters:卷积核个数(通道数)
- kernel_size:卷积核尺寸(长度或宽度)
- strides:卷积核向右(或向下)移动步长
- padding:右边缘(或下边缘)不够一个窗口大小时,是否补零。valid 表示不补,same 表示补零
- dilation_rate:膨胀(空洞)率,每次卷积运算时,相邻元素之间的水平距离
- activation: 激活函数,可选 sigmoid、tanh、relu
注意:当该层作为第一层时,应提供 input_shape
参数。例如 input_shape=(10,128)
表示10个时间步长的时间序列,每步中有128个特征
(2)Conv2D
Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', dilation_rate=(1, 1), activation=None)
- filters:卷积核个数(通道数)
- kernel_size:卷积核尺寸(长度和宽度)
- strides:卷积核向右和向下移动步长
- padding:右边缘和下边缘不够一个窗口大小时,是否补零。valid 表示不补,same 表示补零
- dilation_rate:膨胀(空洞)率,每次卷积运算时,相邻元素之间的水平和竖直距离
- activation: 激活函数,可选 sigmoid、tanh、relu
注意:当该层作为第一层时,应提供 input_shape
参数。例如 input_shape=(128,128,3)
表示128*128的彩色RGB图像
(3)MaxPooling1D
MaxPooling1D(pool_size=2, strides=None, padding='valid')
- pool_size:池化窗口尺寸(长度或宽度)
- strides:窗口向右(或向下)移动步长
- padding:右边缘(或下边缘)不够一个窗口大小时,是否补零。valid 表示不补,same 表示补零
(4)MaxPooling2D
MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid')
- pool_size:池化窗口尺寸(长度和宽度)
- strides:窗口向右和向下移动步长
- padding:右边缘和下边缘不够一个窗口大小时,是否补零。valid 表示不补,same 表示补零
笔者工作空间如下:
代码资源见--> 使用一维卷积和二维卷积实现MNIST数据集分类
2 一维卷积
CNN_1D.py
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Conv1D,MaxPooling1D,Flatten,Dense
#载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y
#序列模型
def CNN_1D(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
model.add(Conv1D(input_shape=(28,28),filters=16,kernel_size=5,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=2,padding='same')) #最大池化
model.add(Conv1D(filters=32,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=2,padding='same')) #最大池化
model.add(Flatten()) #扁平化
model.add(Dense(10,activation='softmax'))
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=20,verbose=2,validation_data=(valid_x,valid_y))
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) #评估模型
print('test_loss:',pre[0],'- test_acc:',pre[1])
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
CNN_1D(train_x,train_y,valid_x,valid_y,test_x,test_y)
网络各层输出尺寸:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_1 (Conv1D) (None, 28, 16) 2256
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 14, 16) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 14, 32) 1568
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 7, 32) 0
_________________________________________________________________
flatten_2 (Flatten) (None, 224) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 2250
=================================================================
Total params: 6,074
Trainable params: 6,074
Non-trainable params: 0
网络训练结果:
Epoch 18/20
- 1s - loss: 0.0659 - acc: 0.9803 - val_loss: 0.0654 - val_acc: 0.9806
Epoch 19/20
- 1s - loss: 0.0627 - acc: 0.9809 - val_loss: 0.0638 - val_acc: 0.9834
Epoch 20/20
- 1s - loss: 0.0601 - acc: 0.9819 - val_loss: 0.0645 - val_acc: 0.9828
test_loss: 0.06519819456152617 - test_acc: 0.9790999978780747
3 二维卷积
CNN_2D.py
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Flatten,Dense
#载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images.reshape(-1,28,28,1),mnist.train.labels,
valid_x,valid_y=mnist.validation.images.reshape(-1,28,28,1),mnist.validation.labels,
test_x,test_y=mnist.test.images.reshape(-1,28,28,1),mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y
#序列模型
def CNN_2D(train_x,train_y,valid_x,valid_y,test_x,test_y):
#创建模型
model=Sequential()
model.add(Conv2D(input_shape=(28,28,1),filters=16,kernel_size=(5,5),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2),padding='same')) #最大池化
model.add(Conv2D(filters=32,kernel_size=(3,3),padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2),padding='same')) #最大池化
model.add(Flatten()) #扁平化
model.add(Dense(10,activation='softmax'))
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=20,verbose=2,validation_data=(valid_x,valid_y))
#评估模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) #评估模型
print('test_loss:',pre[0],'- test_acc:',pre[1])
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
CNN_2D(train_x,train_y,valid_x,valid_y,test_x,test_y)
网络各层输出尺寸:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 28, 28, 16) 416
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 14, 14, 32) 4640
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 1568) 0
_________________________________________________________________
dense_1 (Dense) (None, 10) 15690
=================================================================
Total params: 20,746
Trainable params: 20,746
Non-trainable params: 0
网络训练结果:
Epoch 18/20
- 11s - loss: 0.0290 - acc: 0.9911 - val_loss: 0.0480 - val_acc: 0.9872
Epoch 19/20
- 11s - loss: 0.0284 - acc: 0.9913 - val_loss: 0.0475 - val_acc: 0.9860
Epoch 20/20
- 11s - loss: 0.0258 - acc: 0.9921 - val_loss: 0.0453 - val_acc: 0.9874
test_loss: 0.038486057263799014 - test_acc: 0.9874000072479248
4 补充
(1)AveragePooling1D
AveragePooling1D(pool_size=2, strides=None, padding='valid')
(2)AveragePooling2D
AveragePooling2D(pool_size=(2, 2), strides=None, padding='valid')
声明:本文转自基于keras的卷积神经网络(CNN)