keras建模的3种方式——序列模型、函数模型、子类模型
1.使用RBF神经网络实现函数逼近2.使用BP神经网络实现函数逼近3.使用CNN实现MNIST数据集分类4.tensorflow解决回归问题简单案列5.自然语言建模与词向量6.使用多层RNN-LSTM网络实现MNIST数据集分类及常见坑汇总7.基于tensorflow的RBF神经网络案例8.快速傅里叶变换(FFT)和小波分析在信号处理上的应用9.Python三次样条插值与MATLAB三次样条插值简单案例10.使用TensorFlow实现MNIST数据集分类11.数值积分原理与应用
12.keras建模的3种方式——序列模型、函数模型、子类模型
13.基于keras的残差网络14.基于keras的双层LSTM网络和双向LSTM网络15.seq2seq模型案例分析16.基于keras的卷积神经网络(CNN)17.基于keras的时域卷积网络(TCN)18.基于keras的胶囊网络(CapsNet)1 前言
keras是Google公司于2016年发布的以tensorflow为后端的用于深度学习网络训练的高阶API,因接口设计非常人性化,深受程序员的喜爱。
keras建模有3种实现方式——序列模型、函数模型、子类模型。本文以MNIST手写数字为例,用3种建模方式实现。
关于MNIST数据集的说明,见使用TensorFlow实现MNIST数据集分类
笔者工作空间如下:
2 序列模型
sequential.py
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense
#载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images,mnist.train.labels,
valid_x,valid_y=mnist.validation.images,mnist.validation.labels,
test_x,test_y=mnist.test.images,mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y
#序列模型
def DNN(train_x,train_y,valid_x,valid_y):
#创建模型
model=Sequential()
model.add(Dense(64,input_dim=784,activation='relu'))
model.add(Dense(128,activation='relu'))
model.add(Dense(10,activation='softmax'))
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=100,verbose=2,validation_data=(valid_x,valid_y))
#保存模型
model.save('sequential.h5')
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
DNN(train_x,train_y,valid_x,valid_y)
model=load_model('sequential.h5') #下载模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) #评估模型
print('test_loss:',pre[0],'- test_acc:',pre[1])
运行结果
Epoch 98/100
- 1s - loss: 4.8694e-04 - acc: 1.0000 - val_loss: 0.1331 - val_acc: 0.9776
Epoch 99/100
- 1s - loss: 4.7432e-04 - acc: 1.0000 - val_loss: 0.1336 - val_acc: 0.9778
Epoch 100/100
- 1s - loss: 4.6462e-04 - acc: 1.0000 - val_loss: 0.1343 - val_acc: 0.9774
test_loss: 0.13972217990085484 - test_acc: 0.9768999993801117
3 函数模型
fun_model.py
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Model
from keras.models import load_model
from keras.layers import Input,Dense
#载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images,mnist.train.labels,
valid_x,valid_y=mnist.validation.images,mnist.validation.labels,
test_x,test_y=mnist.test.images,mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y
#函数模型
def DNN(train_x,train_y,valid_x,valid_y):
#创建模型
inputs=Input(shape=(784,))
x=Dense(64,activation='relu')(inputs)
x=Dense(128,activation='relu')(x)
output=Dense(10,activation='softmax')(x)
model=Model(input=inputs,output=output)
#查看网络结构
model.summary()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=100,verbose=2,validation_data=(valid_x,valid_y))
#保存模型
model.save('fun_model.h5')
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
DNN(train_x,train_y,valid_x,valid_y)
model=load_model('fun_model.h5') #下载模型
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) #评估模型
print('test_loss:',pre[0],'- test_acc:',pre[1])
4 子类模型
class_model.py
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Model
from keras.layers import Dense
#载入数据
def read_data(path):
mnist=input_data.read_data_sets(path,one_hot=True)
train_x,train_y=mnist.train.images,mnist.train.labels,
valid_x,valid_y=mnist.validation.images,mnist.validation.labels,
test_x,test_y=mnist.test.images,mnist.test.labels
return train_x,train_y,valid_x,valid_y,test_x,test_y
#子类模型
class DNN(Model):
def __init__(self):
super(DNN,self).__init__()
#初始化网络结构
self.dense1=Dense(64,input_dim=784,activation='relu')
self.dense2=Dense(128,activation='relu')
self.dense3=Dense(10,activation='softmax')
def call(self,inputs): #回调顺序
x=self.dense1(inputs)
x=self.dense2(x)
x=self.dense3(x)
return x
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
model=DNN()
#编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(train_x,train_y,batch_size=500,nb_epoch=100,verbose=2,validation_data=(valid_x,valid_y))
#查看网络结构
model.summary()
pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) #评估模型
print('test_loss:',pre[0],'- test_acc:',pre[1])
5 注意事项
(1)只有序列模型和函数模型能够保存模型,子类模型不能保存模型,即不能调用 model.save()
(2)子类模型中,model.summary() 得放在 model.fit() 之后,否则会报错
ValueError: This model has not yet been built. Build the model first by calling build() or calling fit() with some data. Or specify input_shape or batch_input_shape in the first layer for automatic build.
(3)若想自定义学习率,可以引入优化器对象,如下:
from keras.optimizers import Adam
....
model.compile(optimizer=Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
(4)常用损失函数
mse #均方差(回归)
mae #绝对误差(回归)
binary_crossentropy #二值交叉熵(二分类,逻辑回归)
categorical_crossentropy #交叉熵(多分类)
(5)model.fit( ) 和 model.evaluate( ) 中,属性 verbose 表示打印训练或评估信息是否详细
- 0:不打印进度和结果
- 1:打印进度和结果
Epoch 100/100
55000/55000 [==============================] - 1s 9us/step - loss: 6.0211e-05 - acc: 1.0000 - val_loss: 0.1405 - val_acc: 0.9766
10000/10000 [==============================] - 0s 26us/step
- 2:只打印结果
Epoch 100/100
- 1s - loss: 4.6462e-04 - acc: 1.0000 - val_loss: 0.1343 - val_acc: 0.9774
声明:本文转自keras建模的3种方式——序列模型、函数模型、子类模型
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)