18. 4Sum
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0. A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
分析
两层循环,然后按照3Sum的做。O(n3)的复杂度。150ms
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | class Solution { public : vector<vector< int >> fourSum(vector< int >& nums, int target) { int len = nums.size(); vector<vector< int > > result; if (len < 4) return result; sort(nums.begin(), nums.end()); for ( int i = 0; i < len - 3; ++i){ if ( i > 0 && nums[i] == nums[i - 1]){ continue ; } for ( int j = i + 1; j < len - 2; ++j){ if (j > i + 1 && nums[j] == nums[j - 1]){ continue ; } int l = j + 1; int r = len - 1; while ( l < r){ if ( nums[i] + nums[j] + nums[l] + nums[r] == target){ result.push_back(vector< int >{nums[i], nums[j], nums[l], nums[r]}); l++; while ( l < r && nums[l] == nums[l - 1]) l++; } else if ( nums[i] + nums[j] + nums[l] + nums[r] < target){ l++; } else { r--; } } } } return result; } }; |
对排序后的数组,进行计算的时候,如果满足
1. 最靠前的4个数字之和 > target,则退出计算,因为以后也一定不会满足
2. 前面的数组和 末尾的数字之和 < target,那么说明肯定中间数字之和一定是 < target的,继续
1 2 | if (nums[i]+nums[i+1]+nums[i+2]+nums[i+3]>target) break ; if (nums[i]+nums[len-3]+nums[len-2]+nums[len-1]<target) continue ; |
同时优化满足条件的判断顺序以及后续处理,可以得到如下代码:16ms
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | class Solution { public : vector<vector< int >> fourSum(vector< int >& nums, int target) { int len = nums.size(); vector<vector< int > > result; if (len < 4) return result; sort(nums.begin(), nums.end()); for ( int i = 0; i < len - 3; ++i){ if ( i > 0 && nums[i] == nums[i - 1]){ continue ; } /** cut edge to accelerate the speed **/ if (nums[i]+nums[i+1]+nums[i+2]+nums[i+3]>target) break ; if (nums[i]+nums[len-3]+nums[len-2]+nums[len-1]<target) continue ; for ( int j = i + 1; j < len - 2; ++j){ if (j > i + 1 && nums[j] == nums[j - 1]){ continue ; } /** cut edge to accelerate the speed **/ if (nums[i]+nums[j]+nums[j+1]+nums[j+2]>target) break ; if (nums[i]+nums[j]+nums[len-2]+nums[len-1]<target) continue ; int l = j + 1; int r = len - 1; while ( l < r){ int sum = nums[i] + nums[j] + nums[l] + nums[r]; if ( sum < target){ l++; } else if ( sum > target){ r--; } else { result.push_back(vector< int >{nums[i], nums[j], nums[l], nums[r]}); /** cut edge to accelerate the speed **/ r--;l++; while ( l < r && nums[l] == nums[l - 1])l++; while ( l < r && nums[r] == nums[r + 1])r--; } } } } return result; } }; |