求一个整数的二进制中1的个数

求一个整数的二进制中1的个数 收藏
题目:输入一个整数,求该整数的二进制表达中有多少个1。例如输入10,由于其二进制表示为1010,有两个1,因此输出2。

分析:这是一道很基本的考查位运算的面试题。包括微软在内的很多公司都曾采用过这道题。

一个很基本的想法是,我们先判断整数的最右边一位是不是1。接着把整数右移一位,原来处于右边第二位的数字现在被移到第一位了,再判断是不是1。这样每次 移动一位,直到这个整数变成0为止。现在的问题变成怎样判断一个整数的最右边一位是不是1了。很简单,如果它和整数1作与运算。由于1除了最右边一位以 外,其他所有位都为0。因此如果与运算的结果为1,表示整数的最右边一位是1,否则是0。

得到的代码如下:

///////////////////////////////////////////////////////////////////////
// Get how many 1s in an integer's binary expression
///////////////////////////////////////////////////////////////////////
int NumberOf1_Solution1(int i)
{
      int count = 0;
      while(i)
      {
            if(i & 1)
                  count ++;

            i = i >> 1;
      }

      return count;
}

可能有读者会问,整数右移一位在数学上是和除以2是等价的。那可不可以把上面的代码中的右移运算符换成除以2呢?答案是最好不要换成除法。因为除法的效率比移位运算要低的多,在实际编程中如果可以应尽可能地用移位运算符代替乘除法。

这个思路当输入i是正数时没有问题,但当输入的i是一个负数时,不但不能得到正确的1的个数,还将导致死循环。以负数0x80000000为例,右移一位 的时候,并不是简单地把最高位的1移到第二位变成0x40000000,而是0xC0000000。这是因为移位前是个负数,仍然要保证移位后是个负数, 因此移位后的最高位会设为1。如果一直做右移运算,最终这个数字就会变成0xFFFFFFFF而陷入死循环。

为了避免死循环,我们可以不右移输入的数字i。首先i和1做与运算,判断i的最低位是不是为1。接着把1左移一位得到2,再和i做与运算,就能判断i的次高位是不是1……这样反复左移,每次都能判断i的其中一位是不是1。基于此,我们得到如下代码:

///////////////////////////////////////////////////////////////////////
// Get how many 1s in an integer's binary expression
///////////////////////////////////////////////////////////////////////
int NumberOf1_Solution2(int i)
{
      int count = 0;
      unsigned int flag = 1;
      while(flag)
      {
            if(i & flag)
                  count ++;

            flag = flag << 1;
      }

      return count;
}

另外一种思路是如果一个整数不为0,那么这个整数至少有一位是1。如果我们把这个整数减去1,那么原来处在整数最右边的1就会变成0,原来在1后面的所有 的0都会变成1。其余的所有位将不受到影响。举个例子:一个二进制数1100,从右边数起的第三位是处于最右边的一个1。减去1后,第三位变成0,它后面 的两位0变成1,而前面的1保持不变,因此得到结果是1011。

我们发现减1的结果是把从最右边一个1开始的所有位都取反了。这个时候如果我们再把原来的整数和减去1之后的结果做与运算,从原来整数最右边一个1那一位 开始所有位都会变成0。如1100&1011=1000。也就是说,把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0。那么 一个整数的二进制有多少个1,就可以进行多少次这样的操作。

这种思路对应的代码如下:

///////////////////////////////////////////////////////////////////////
// Get how many 1s in an integer's binary expression
///////////////////////////////////////////////////////////////////////
int NumberOf1_Solution3(int i)
{
      int count = 0;

      while (i)
      {
            ++ count;
            i = (i - 1) & i;
      }

      return count;
}

扩展:如何用一个语句判断一个整数是不是二的整数次幂?

PS:n&(n-1)==0;//二进制数只有一位位1,则该数是2的整数次幂.


简单查表,相对来说效率也不错。

int countBits(int value){
      int count=0;
      int bits4[]={0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
      while(value!=0){
            count+=bits4[value&0xf];
      value>>=4;
      }
      return count;
}

======================================================

这是一道《编程之美-微软技术面试心得》中的题目,问题描述如下:

对于一个字节(8bit)的变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能地高。

《编程之美》中给出了五种解法,但是实际上从 Wikipedia 上我们可以找到更优的算法。

这道题的本质相当于求二进制数的 Hamming 权重,或者说是该二进制数与 0 的 Hamming 距离,这两个概念在信息论和编码理论中是相当有名的。在二进制的情况下,它们也经常被叫做 population count 或者 popcount 问题,比如 gcc 中就提供了一个内建函数:

int __builtin_popcount (unsigned int x)

输出整型数二进制中 1 的个数。但是 GCC 的 __builtin_popcount 的实现主要是基于查表法做的,跟编程之美中解法 5 是一样的。Wikipedia 上的解法是基于分治法来做的,构造非常巧妙,通过有限次简单地算术运算就能求得结果,特别适合那些受存储空间限制的算法中使用:


#include <stdio.h>

typedef unsigned int UINT32;
const UINT32 m1  = 0x55555555;  // 01010101010101010101010101010101
const UINT32 m2  = 0x33333333;  // 00110011001100110011001100110011
const UINT32 m4  = 0x0f0f0f0f;  // 00001111000011110000111100001111
const UINT32 m8  = 0x00ff00ff;  // 00000000111111110000000011111111
const UINT32 m16 = 0x0000ffff;  // 00000000000000001111111111111111
const UINT32 h01 = 0x01010101;  // the sum of 256 to the power of 0, 1, 2, 3


int popcount_1(UINT32 x)
{
  x = (x & m1) + ((x >> 1) & m1);
  x = (x & m2) + ((x >> 2) & m2);
  x = (x & m4) + ((x >> 4) & m4);
  x = (x & m8) + ((x >> 8) & m8);
  x = (x & m16) + ((x >> 16) & m16);
  return x;
}


int popcount_2(UINT32 x)
{
  x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
  x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
  x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
  x += x >> 8;           //put count of each 16 bits into their lowest 8 bits
  x += x >> 16;          //put count of each 32 bits into their lowest 8 bits
  return x & 0x1f;
}


int popcount_3(UINT32 x)
{
  x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
  x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
  x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
  return (x * h01) >> 24;  // left 8 bits of x + (x<<8) + (x<<16) + (x<<24)
}

int main()
{
  int i = 0x1ff12ee2;
  printf("i = %d = 0x%x\n", i, i);
  printf("popcount_1(%d) = %d\n", i, popcount_1(i));
  printf("popcount_2(%d) = %d\n", i, popcount_2(i));
  printf("popcount_3(%d) = %d\n", i, popcount_3(i));
 
  printf("GCC's  __builtin_popcount(%d) = %d\n", i,  __builtin_popcount(i));
  return 0;
}

以上内容来源于http://blog.solrex.cn/articles/population-count-problem.html
===========================================================

HAKMEM算法:

int Count(unsigned x)
{
    unsigned n;   

    n = (x >> 1) & 033333333333;   
    x = x - n;  
    n = (n >> 1) & 033333333333;  
    x = x - n;   
    x = (x + (x >> 3)) & 030707070707;  
    x = modu(x, 63); 
    return x;  

说明:首先是将二进制各位三个一组,求出每组中1的个数,然后相邻两组归并,得到六个一组的1的个数,最后很巧妙的用除63取余得到了结果。
因为2^6 = 64,也就是说 x_0 + x_1 * 64 + x_2 * 64 * 64 = x_0 + x_1 + x_2 (mod 63),这里的等号表示同余。
这个程序只需要十条左右指令,而且不访存,速度很快


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wangjun_1218/archive/2009/08/19/4464129.aspx

posted @ 2015-11-23 08:47  微博和csdn还有你  阅读(271)  评论(0编辑  收藏  举报