A1064. Complete Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10 1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
1 #include<cstdio> 2 #include<iostream> 3 #include<vector> 4 #include<algorithm> 5 using namespace std; 6 int tree[10001], N, index = 0, num[10001]; 7 bool cmp(int a, int b){ 8 return a < b; 9 } 10 void inOrder(int root){ 11 if(root > N) 12 return; 13 inOrder(root * 2); 14 tree[root] = num[index++]; 15 inOrder(root * 2 + 1); 16 } 17 int main(){ 18 scanf("%d", &N); 19 for(int i = 0; i < N; i++) 20 scanf("%d", &num[i]); 21 sort(num, num + N, cmp); 22 inOrder(1); 23 for(int i = 1; i <= N; i++){ 24 if(i != N) 25 printf("%d ", tree[i]); 26 else printf("%d", tree[i]); 27 } 28 cin >> N; 29 return 0; 30 }
总结:
1、题意:给出一组数字,要求将它们建立成一颗二叉搜索树。因为结果不唯一,所以加了限制条件:要求搜索树是一颗完全二叉树。
2、二叉搜索树的中序序列是从小到大的有序数列,所以对初始序列排序后就能得到搜索树的中序序列。
3、完全二叉树的树形状在给出节点个数N之后就是已知的。所以相当于已经知道了答案所求树的形状,但仅仅是树的节点没有填入值罢了。由于搜索树的中序序列已知,只需要按照中序遍历完全二叉树,在遍历的过程中填入搜索树的中序序列值即可。