第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。
第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法。
在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算。不幸的是,尽管模块化的使用非常广泛,但是它不能像其它算术运算(如加法和乘法)那样容易的执行。蒙哥马利表达提供了一种解决方案,这里我们讨论另一种解决方法——伪梅森素数规约。
定义:如果一个素数\(p\)被写成如下形式,那么就称\(p\)位伪梅森素数。其中\(b=2,c=1\)时就是梅森素数。
实际上,\(b\)总是2,我们选择\(c\)通常是32位或者64位。
通过定义很容易推导出
因此给定一个\(k\)位的整数\(z\),我们让\(z^{'}\)为最低\(n\)位有效位,\(z^{''}\)是高\(k-n\)位有效位,就有\(z = z^{''}2^n+z^{'}\),然后我们能重写\(z \mod p\)为
重复的计算上述式子,就可以得到\(z \mod p\)的值,这个值在\(Z_p\)中。(\(Z_p\)就是模\(p\)的完全剩余系。)
下面有些需要注意的点:
1.\(z^{'}\)和\(z^{''}\)都能够通过简单的移位运算获得。
2.因为\(c\)被选择是一个字的长度,那么乘法计算会变得容易。
3.每次迭代会减少\(k\)的值。得到的值会是\(max(k-n+w,n)\)。
因此一般来说,计算伪梅森素数的约减将会仅仅需要移位,加法和乘法。
然而,使用这种方法的缺点也很明显,因为这种实现通常需要多方使用固定的设置,这可能会导致互操作性和安全性问题。更多的细节参考[1]和[2]。
\(GF(2^n)\)是另外一个经常被用到的域。
三项式和五项式是这个领域中最长用到的模。我们将会展示三项式如果简化约减。相同的技术亦可以直接用于五项式。
这个想法和素数域的那个非常类似。假设我们有三项式\(f(x) = x^n+x^t+1\),其中 $ 0<t<n/2 $。
我们立刻就有
给定多项式\(z(x)\)的次数大于\(n\)。我们把\(z(n)\)写成
其中,\(z^{'}(x)\)是\(z(x)\)的最低\(n\)位,\(z^{''}(x)\)是剩下的位数。
然后我们就像在GF(p)中那样,我们计算模数通过:
这个运算因为\(t\)是一个更小的数使得它变得简单了。
[2]中也描述了标准规约的另一个优化。考虑到标准的例程会规约\(z(x)\) 的次数\(m\)而不是\(f(x)\)的次数\(n\):
当我们尝试规约\(a_ix^i\),有下面两种情况:
- 如果\(a_i=0\),那么就不用规约
- 如果\(a_i=1\),1就可以进行对齐,提出一个这样的元素\(a_{i-n+t}\)和\(a_{i-n}\)。
因为添加\(0\)不会改变余数,这两种情况可以被一般化,因此我们能写下如下的标准规约程序:
Input:\(z(x)\)
Output:\(z(x)\)
1.for \(i=m\) to \(n\) by -1
2.{
3.\(a_{i-n+t}+=a_i\)
4.\(a_{i-n}+=a_i\)
5.}
使用这样算法的在软件上的优化不是明显的。但是在硬件上的优化是明显的,同时仅仅更新了\(z(x)\),不需要额外的存储。
另外一个优点就是这样的形式仅仅需要$ 0<t<n $,它能被在常量时间内执行。
[1]Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC press, 1996.
[2]Blake, Ian F., Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography. Vol. 265. Cambridge university press, 1999.