Python进阶学习---matplotlib的使用

基础用法

使用import导入模块matplotlib.pyplot,并简写成plt;使用import导入模块numpy,并简写成np

import matplotlib.pyplot as plt
import numpy as np

使用np.linspace定义x:范围是(-1,1);个数是100,仿真一维数据(x,y)表示曲线1

x=np.linspace(-1,1,100)
y=2*x+1

使用plt.figure定义一个图像窗口,使用plt.plot画(x,y)曲线,使用plt.show显示图像

plt.figure()
plt.plot(x,y)
plt.show()

figure图像

如上所述,画出一个基本图像

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-3,3,50)
y1=2*x+1
y2=x**2
plt.figure()
plt.plot(x,y1)
plt.show()

得到下图:

 使用plt.figure定义一个图像窗口:标号为3;大小为(8,5),使用plt.plot画(x,y2)曲线,曲线的颜色属性(color)为蓝色;曲线的宽带(linewidth)为5.0;曲线的类型(linestyle)为实线;使用plt.plot画(x,y1)曲线,曲线的颜色属性(color)为红色;曲线的宽带(linewidth)为1.0;曲线的类型(linestyle)为虚线,使用plt.show()显示图像。

plt.figure(num=3,figsize=(8,5))
plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--')
plt.plot(x,y2,color='blue',linewidth=5.0,linestyle='-')
plt.show()

得到图像:

设置坐标轴

先建立一个基本图像

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-3, 3, 50)
y1 = 2*x + 1
y2 = x**2
plt.figure()
plt.plot(x, y2)
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
plt.show()

 

 

使用plt.xlim设置x坐标轴范围:(-1, 2); 使用plt.ylim设置y坐标轴范围:(-2, 3); 使用plt.xlabel设置x坐标轴名称:’I am x’; 使用plt.ylabel设置y坐标轴名称:’I am y’;

plt.xlim((-1, 2))
plt.ylim((-2, 3))
plt.xlabel('I am x')
plt.ylabel('I am y')

 

 

 使用np.linspace定义范围以及个数:范围是(-1,2);个数是5. 使用print打印出新定义的范围. 使用plt.xticks设置x轴刻度:范围是(-1,2);个数是5.

new_ticks = np.linspace(-1, 2, 5)
print(new_ticks)  #[-1.   -0.25  0.5   1.25  2.  ]
plt.xticks(new_ticks)

使用plt.yticks设置y轴刻度以及名称:刻度为[-2, -1.8, -1, 1.22, 3];对应刻度的名称为[‘really bad’,’bad’,’normal’,’good’, ‘really good’]. 使用plt.show显示图像.

plt.yticks([-2, -1.8, -1, 1.22, 3],[r'$really\ bad$', r'$bad$', r'$normal$', r'$good$', r'$really\ good$'])
plt.show()

 

 使用plt.gca获取当前坐标轴信息. 使用.spines设置边框:右侧边框;使用.set_color设置边框颜色:默认白色; 使用.spines设置边框:上边框;使用.set_color设置边框颜色:默认白色;

 

使用.xaxis.set_ticks_position设置x坐标刻度数字或名称的位置:bottom.(所有位置:topbottombothdefaultnone

再使用.spines设置边框:x轴;使用.set_position设置边框位置:y=0的位置;(位置所有属性:outwardaxesdata

 

使用.yaxis.set_ticks_position设置y坐标刻度数字或名称的位置:left.(所有位置:leftrightbothdefaultnone

使用.spines设置边框:y轴;使用.set_position设置边框位置:x=0的位置;(位置所有属性:outwardaxesdata) 使用plt.show显示图像.

legend图例

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3, 3, 50)
y1 = 2*x + 1
y2 = x**2

plt.figure()
#set x limits
plt.xlim((-1, 2))
plt.ylim((-2, 3))

# set new sticks
new_sticks = np.linspace(-1, 2, 5)
plt.xticks(new_sticks)
# set tick labels
plt.yticks([-2, -1.8, -1, 1.22, 3],
           [r'$really\ bad$', r'$bad$', r'$normal$', r'$good$', r'$really\ good$'])

本节中我们将对图中的两条线绘制图例,首先我们设置两条线的类型等信息(蓝色实线与红色虚线).

# set line syles
l1, = plt.plot(x, y1, label='linear line')
l2, = plt.plot(x, y2, color='red', linewidth=1.0, linestyle='--', label='square line')

legend将要显示的信息来自于上面代码中的 label. 所以我们只需要简单写下一下代码, plt 就能自动的为我们添加图例.

plt.legend(loc='upper right')

参数 loc='upper right' 表示图例将添加在图中的右上角.

 

如果我们想单独修改之前的 label 信息, 给不同类型的线条设置图例信息. 我们可以在 plt.legend 输入更多参数. 如果以下面这种形式添加 legend, 我们需要确保, 在上面的代码 plt.plot(x, y2, label='linear line') 和 plt.plot(x, y1, label='square line') 中有用变量 l1 和 l2 分别存储起来. 而且需要注意的是 l1, l2,要以逗号结尾, 因为plt.plot() 返回的是一个列表.

plt.legend(handles=[l1, l2], labels=['up', 'down'],  loc='best')

这样我们就能分别重新设置线条对应的 label 了.

最后我们得到带有图例信息的图片.

 

 其中’loc’参数有多种,’best’表示自动分配最佳位置,其余的如下:

 'best' : 0,          
 'upper right'  : 1,
 'upper left'   : 2,
 'lower left'   : 3,
 'lower right'  : 4,
 'right'        : 5,
 'center left'  : 6,
 'center right' : 7,
 'lower center' : 8,
 'upper center' : 9,
 'center'       : 10,

标注

画出基本图

当图线中某些特殊地方需要标注时,我们可以使用 annotation. matplotlib 中的 annotation 有两种方法, 一种是用 plt 里面的 annotate,一种是直接用 plt 里面的 text 来写标注.

首先,我们在坐标轴中绘制一条直线.

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3, 3, 50)
y = 2*x + 1

plt.figure(num=1, figsize=(8, 5),)
plt.plot(x, y,)

移动坐标

然后我们挪动坐标轴的位置.

ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

 

 然后标注出点(x0, y0)的位置信息. 用plt.plot([x0, x0,], [0, y0,], 'k--', linewidth=2.5) 画出一条垂直于x轴的虚线.

x0 = 1
y0 = 2*x0 + 1
plt.plot([x0, x0,], [0, y0,], 'k--', linewidth=2.5)
# set dot styles
plt.scatter([x0, ], [y0, ], s=50, color='b')

添加注释annotate

接下来我们就对(x0, y0)这个点进行标注.

plt.annotate(r'$2x+1=%s$' % y0, xy=(x0, y0), xycoords='data', xytext=(+30, -30),
             textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle='->', connectionstyle="arc3,rad=.2"))

其中参数xycoords='data' 是说基于数据的值来选位置, xytext=(+30, -30) 和 textcoords='offset points' 对于标注位置的描述 和 xy 偏差值, arrowprops是对图中箭头类型的一些设置.

添加注释text

plt.text(-3.7, 3, r'$This\ is\ the\ some\ text. \mu\ \sigma_i\ \alpha_t$',
         fontdict={'size': 16, 'color': 'r'})

其中-3.7, 3,是选取text的位置, 空格需要用到转字符,fontdict设置文本字体

tick能见度

生成图形

当图片中的内容较多,相互遮盖时,我们可以通过设置相关内容的透明度来使图片更易于观察,也即是通过本节中的bbox参数设置来调节图像信息.

首先参考之前的例子, 我们先绘制图像基本信息:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-3, 3, 50)
y = 0.1*x

plt.figure()
# 在 plt 2.0.2 或更高的版本中, 设置 zorder 给 plot 在 z 轴方向排序
plt.plot(x, y, linewidth=10, zorder=1)
plt.ylim(-2, 2)
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

调整坐标

然后对被遮挡的图像调节相关透明度,本例中设置 x轴 和 y轴 的刻度数字进行透明度设置

for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(12)
    # 在 plt 2.0.2 或更高的版本中, 设置 zorder 给 plot 在 z 轴方向排序
    label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.7, zorder=2))
plt.show()

其中label.set_fontsize(12)重新调节字体大小,bbox设置目的内容的透明度相关参,facecolor调节 box 前景色,edgecolor 设置边框, 本处设置边框为无,alpha设置透明度. 最终结果如下:

scatter散点图

 首先,先引入matplotlib.pyplot简写成plt,再引入模块numpy用来产生一些随机数据。生成1024个呈标准正态分布的二维数据组(平均数是0,方差是1)作为一个数据集,并图像化这个数据集。每一个点的颜色值用T来表示:

import matplotlib.pyplot as plt
import numpy as np

n = 1024    # data size
X = np.random.normal(0, 1, n) # 每一个点的X值
Y = np.random.normal(0, 1, n) # 每一个点的Y值
T = np.arctan2(Y,X) # for color value

数据集生成完毕,现在用来scatter来plot这个点集,鼠标点上去,可以看到这个函数的各个parameter的描述,如下图:

 

 输入X和Y作为location,size=75,颜色为T,color map用默认值,透明度alpha为50%,X轴显示范围为(-1.5,1.5),并用xtick()函数来隐藏x坐标轴,y轴同理:

plt.scatter(X, Y, s=75, c=T, alpha=.5)

plt.xlim(-1.5, 1.5)
plt.xticks(())  # ignore xticks
plt.ylim(-1.5, 1.5)
plt.yticks(())  # ignore yticks

plt.show()

效果如下图:

bar直方图

先上效果图:

生成基本图形

向上和向下分别生成12个数据,X为0~11的整数,Y是相应的均匀分布的随机数据。使用的函数是plt.bar,参数是X和Y:

import matplotlib.pyplot as plt
import numpy as np

n = 12
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)

plt.bar(X, +Y1)
plt.bar(X, -Y2)

plt.xlim(-.5, n)
plt.xticks(())
plt.ylim(-1.25, 1.25)
plt.yticks(())

plt.show()

生成基本框架图像:

加颜色和数据

下面我们就颜色和数值进行优化。用facecolor设置主体颜色,edgecolor设置边框颜色为白色:

plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

效果如下:

 

 接下来我们用函数plt.text分别在柱体上方和下方加上数值,用%.2f保留2位小数,横向居中对齐ha='center',纵向底部(顶部)对齐va='bottom'

for x,y in zip(X,Y1):
    plt.text(x,y,'%.2f'%y,ha='center',va='bottom')
for x,y in zip(X,Y2):
    plt.text(x,-y,'%.2f'%y,ha='center',va='top')

最终效果如下图:

contours等高线图

画等高线

数据集即三维点 (x,y) 和对应的高度值,共有256个点。高度值使用一个 height function f(x,y) 生成。 x, y 分别是在区间 [-3,3] 中均匀分布的256个值,并用meshgrid在二维平面中将每一个x和每一个y分别对应起来,编织成栅格:

import matplotlib.pyplot as plt
import numpy as np

def f(x,y):
    # the height function
    return (1 - x / 2 + x**5 + y**3) * np.exp(-x**2 -y**2)

n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X,Y = np.meshgrid(x, y)

接下来进行颜色填充。使用函数plt.contourf把颜色加进去,位置参数分别为:X, Y, f(X,Y)。透明度0.75,并将 f(X,Y) 的值对应到color map的暖色组中寻找对应颜色。

# use plt.contourf to filling contours
# X, Y and value for (X,Y) point
plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot)

接下来进行等高线绘制。使用plt.contour函数划线。位置参数为:X, Y, f(X,Y)。颜色选黑色,线条宽度选0.5。现在的结果如下图所示,只有颜色和线条,还没有数值Label:

# use plt.contour to add contour lines
C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)

添加高度数字

其中,8代表等高线的密集程度,这里被分为10个部分。如果是0,则图像被一分为二。

最后加入Label,inline控制是否将Label画在线里面,字体大小为10。并将坐标轴隐藏:

plt.clabel(C, inline=True, fontsize=10)
plt.xticks(())
plt.yticks(())

3D图

 本节效果图:

 

 首先在进行3D plot时除了导入matplotlib,还要额外添加一个模块,即Axes 3D 3D坐标轴显示:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

之后要先定义一个图像窗口,在窗口上添加3D坐标轴:

fig = plt.figure()
ax = Axes3D(fig)
plt.show()

显示效果如下:

 

 接下来给进X和Y值,并将X和Y编织成栅格。每一个(X,Y)点对应的高度值我们用下面这个函数来进行计算:

X=np.arange(-4,4,0.25)
Y=np.arange(-4,4,0.25)
X,Y=np.meshgrid(X,Y)
R=np.sqrt(X**2+Y**2)
Z=np.sin(R)

做出一个三维曲面,并将一个colormap rainbow填充颜色,之后将三维图像投影到XY平面上做一个等高线图。plot3D 图像:

ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))

其中,rstride和cstride分别代表row和column的跨度。

下图为跨度为1的效果:

 

 下图为跨度为5的效果:

 

 下面添加XY平面的等高线:

ax.contour(X,Y,Z,zdir='z',offset=-1,cmap=plt.get_cmap('rainbow'))

如果zdir选择了X,那么效果将会是对于XZ平面的投影,效果如下:

最终效果图入下:

 

suplot

Subplot多合一显示

均匀图中图

matplotlib 是可以组合许多的小图, 放在一张大图里面显示的. 使用到的方法叫作 subplot.

使用import导入matplotlib.pyplot模块, 并简写成plt. 使用plt.figure创建一个图像窗口.

import matplotlib.pyplot as plt

plt.figure()

使用plt.subplot来创建小图. plt.subplot(2,2,1)表示将整个图像窗口分为2行2列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,2,1)
plt.plot([0,1],[0,1])

plt.subplot(2,2,2)表示将整个图像窗口分为2行2列, 当前位置为2. 使用plt.plot([0,1],[0,2])在第2个位置创建一个小图.

plt.subplot(2,2,2)
plt.plot([0,1],[0,2])

plt.subplot(2,2,3)表示将整个图像窗口分为2行2列,当前位置为3. plt.subplot(2,2,3)可以简写成plt.subplot(223), matplotlib同样可以识别. 使用plt.plot([0,1],[0,3])在第3个位置创建一个小图.

plt.subplot(223)
plt.plot([0,1],[0,3])

plt.subplot(224)表示将整个图像窗口分为2行2列, 当前位置为4. 使用plt.plot([0,1],[0,4])在第4个位置创建一个小图.

plt.subplot(224)
plt.plot([0,1],[0,4])

plt.show()  # 展示

不均匀图中图

如果希望展示的小图的大小不相同, 应该怎么做呢? 以上面的4个小图为例, 如果把第1个小图放到第一行, 而剩下的3个小图都放到第二行.

使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 当前位置为1. 使用plt.plot([0,1],[0,1])在第1个位置创建一个小图.

plt.subplot(2,1,1)
plt.plot([0,1],[0,1])

使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 当前位置为4. 使用plt.plot([0,1],[0,2])在第4个位置创建一个小图.

plt.subplot(2,3,4)
plt.plot([0,1],[0,2])

这里需要解释一下为什么第4个位置放第2个小图. 上一步中使用plt.subplot(2,1,1)将整个图像窗口分为2行1列, 第1个小图占用了第1个位置, 也就是整个第1行. 这一步中使用plt.subplot(2,3,4)将整个图像窗口分为2行3列, 于是整个图像窗口的第1行就变成了3列, 也就是成了3个位置, 于是第2行的第1个位置是整个图像窗口的第4个位置.

使用plt.subplot(235)将整个图像窗口分为2行3列,当前位置为5. 使用plt.plot([0,1],[0,3])在第5个位置创建一个小图. 同上, 再创建plt.subplot(236).

plt.subplot(235)
plt.plot([0,1],[0,3])

plt.subplot(236)
plt.plot([0,1],[0,4])

plt.show()  # 展示

动态图

定义方程

使用matplotlib做动画也是可以的,我们使用其中一种方式,function animation来说说, 具体可参考matplotlib animation api。首先,我们做一些准备工作:

from matplotlib import pyplot as plt
from matplotlib import animation
import numpy as np
fig, ax = plt.subplots()

我们的数据是一个0~2π内的正弦曲线:

x = np.arange(0, 2*np.pi, 0.01)
line, = ax.plot(x, np.sin(x))

 

 接着,构造自定义动画函数animate,用来更新每一帧上各个x对应的y坐标值,参数表示第i帧:

def animate(i):
    line.set_ydata(np.sin(x + i/10.0))
    return line,

然后,构造开始帧函数init

def init():
    line.set_ydata(np.sin(x))
    return line,

参数设置

接下来,我们调用FuncAnimation函数生成动画。参数说明:

  1. fig 进行动画绘制的figure
  2. func 自定义动画函数,即传入刚定义的函数animate
  3. frames 动画长度,一次循环包含的帧数
  4. init_func 自定义开始帧,即传入刚定义的函数init
  5. interval 更新频率,以ms计
  6. blit 选择更新所有点,还是仅更新产生变化的点。应选择True,但mac用户请选择False,否则无法显示动画
ani = animation.FuncAnimation(fig=fig,
                              func=animate,
                              frames=100,
                              init_func=init,
                              interval=20,
                              blit=False)

 

posted @ 2019-09-29 15:18  凝宝爱火锅  阅读(593)  评论(0编辑  收藏  举报