PyTorch图像分类全流程实战--构建自己的图像分类数据01
前言
【教程地址】
同济子豪兄教学视频:https://space.bilibili.com/1900783/channel/collectiondetail?sid=606800
导入工具包
import numpy as np
import os
import math
import time
import requests
import urllib3
import pandas as pd
import cv2
urllib3.disable_warnings()
from PIL import Image#删除非三通道的图片
import matplotlib.pyplot as plt #画图
%matplotlib inline
from scipy.stats import gaussian_kde
from matplotlib.colors import LogNorm
#可视化图像
import matplotlib.image as mpimg
from mpl_toolkits.axes_grid1 import ImageGrid
#划分数据集
import shutil
import random
#进度条
from tqdm import tqdm
#HTTP请求参数
cookies = {
'BDqhfp': '%E7%8B%97%E7%8B%97%26%26NaN-1undefined%26%2618880%26%2621',
'BIDUPSID': '06338E0BE23C6ADB52165ACEB972355B',
'PSTM': '1646905430',
'BAIDUID': '104BD58A7C408DABABCAC9E0A1B184B4:FG=1',
'BDORZ': 'B490B5EBF6F3CD402E515D22BCDA1598',
'H_PS_PSSID': '35836_35105_31254_36024_36005_34584_36142_36120_36032_35993_35984_35319_26350_35723_22160_36061',
'BDSFRCVID': '8--OJexroG0xMovDbuOS5T78igKKHJQTDYLtOwXPsp3LGJLVgaSTEG0PtjcEHMA-2ZlgogKK02OTH6KF_2uxOjjg8UtVJeC6EG0Ptf8g0M5',
'H_BDCLCKID_SF': 'tJPqoKtbtDI3fP36qR3KhPt8Kpby2D62aKDs2nopBhcqEIL4QTQM5p5yQ2c7LUvtynT2KJnz3Po8MUbSj4QoDjFjXJ7RJRJbK6vwKJ5s5h5nhMJSb67JDMP0-4F8exry523ioIovQpn0MhQ3DRoWXPIqbN7P-p5Z5mAqKl0MLPbtbb0xXj_0D6bBjHujtT_s2TTKLPK8fCnBDP59MDTjhPrMypomWMT-0bFH_-5L-l5js56SbU5hW5LSQxQ3QhLDQNn7_JjOX-0bVIj6Wl_-etP3yarQhxQxtNRdXInjtpvhHR38MpbobUPUDa59LUvEJgcdot5yBbc8eIna5hjkbfJBQttjQn3hfIkj0DKLtD8bMC-RDjt35n-Wqxobbtof-KOhLTrJaDkWsx7Oy4oTj6DD5lrG0P6RHmb8ht59JROPSU7mhqb_3MvB-fnEbf7r-2TP_R6GBPQtqMbIQft20-DIeMtjBMJaJRCqWR7jWhk2hl72ybCMQlRX5q79atTMfNTJ-qcH0KQpsIJM5-DWbT8EjHCet5DJJn4j_Dv5b-0aKRcY-tT5M-Lf5eT22-usy6Qd2hcH0KLKDh6gb4PhQKuZ5qutLTb4QTbqWKJcKfb1MRjvMPnF-tKZDb-JXtr92nuDal5TtUthSDnTDMRhXfIL04nyKMnitnr9-pnLJpQrh459XP68bTkA5bjZKxtq3mkjbPbDfn02eCKuj6tWj6j0DNRabK6aKC5bL6rJabC3b5CzXU6q2bDeQN3OW4Rq3Irt2M8aQI0WjJ3oyU7k0q0vWtvJWbbvLT7johRTWqR4enjb3MonDh83Mxb4BUrCHRrzWn3O5hvvhKoO3MA-yUKmDloOW-TB5bbPLUQF5l8-sq0x0bOte-bQXH_E5bj2qRCqVIKa3f',
'BDSFRCVID_BFESS': '8--OJexroG0xMovDbuOS5T78igKKHJQTDYLtOwXPsp3LGJLVgaSTEG0PtjcEHMA-2ZlgogKK02OTH6KF_2uxOjjg8UtVJeC6EG0Ptf8g0M5',
'H_BDCLCKID_SF_BFESS': 'tJPqoKtbtDI3fP36qR3KhPt8Kpby2D62aKDs2nopBhcqEIL4QTQM5p5yQ2c7LUvtynT2KJnz3Po8MUbSj4QoDjFjXJ7RJRJbK6vwKJ5s5h5nhMJSb67JDMP0-4F8exry523ioIovQpn0MhQ3DRoWXPIqbN7P-p5Z5mAqKl0MLPbtbb0xXj_0D6bBjHujtT_s2TTKLPK8fCnBDP59MDTjhPrMypomWMT-0bFH_-5L-l5js56SbU5hW5LSQxQ3QhLDQNn7_JjOX-0bVIj6Wl_-etP3yarQhxQxtNRdXInjtpvhHR38MpbobUPUDa59LUvEJgcdot5yBbc8eIna5hjkbfJBQttjQn3hfIkj0DKLtD8bMC-RDjt35n-Wqxobbtof-KOhLTrJaDkWsx7Oy4oTj6DD5lrG0P6RHmb8ht59JROPSU7mhqb_3MvB-fnEbf7r-2TP_R6GBPQtqMbIQft20-DIeMtjBMJaJRCqWR7jWhk2hl72ybCMQlRX5q79atTMfNTJ-qcH0KQpsIJM5-DWbT8EjHCet5DJJn4j_Dv5b-0aKRcY-tT5M-Lf5eT22-usy6Qd2hcH0KLKDh6gb4PhQKuZ5qutLTb4QTbqWKJcKfb1MRjvMPnF-tKZDb-JXtr92nuDal5TtUthSDnTDMRhXfIL04nyKMnitnr9-pnLJpQrh459XP68bTkA5bjZKxtq3mkjbPbDfn02eCKuj6tWj6j0DNRabK6aKC5bL6rJabC3b5CzXU6q2bDeQN3OW4Rq3Irt2M8aQI0WjJ3oyU7k0q0vWtvJWbbvLT7johRTWqR4enjb3MonDh83Mxb4BUrCHRrzWn3O5hvvhKoO3MA-yUKmDloOW-TB5bbPLUQF5l8-sq0x0bOte-bQXH_E5bj2qRCqVIKa3f',
'indexPageSugList': '%5B%22%E7%8B%97%E7%8B%97%22%5D',
'cleanHistoryStatus': '0',
'BAIDUID_BFESS': '104BD58A7C408DABABCAC9E0A1B184B4:FG=1',
'BDRCVFR[dG2JNJb_ajR]': 'mk3SLVN4HKm',
'BDRCVFR[-pGxjrCMryR]': 'mk3SLVN4HKm',
'ab_sr': '1.0.1_Y2YxZDkwMWZkMmY2MzA4MGU0OTNhMzVlNTcwMmM2MWE4YWU4OTc1ZjZmZDM2N2RjYmVkMzFiY2NjNWM4Nzk4NzBlZTliYWU0ZTAyODkzNDA3YzNiMTVjMTllMzQ0MGJlZjAwYzk5MDdjNWM0MzJmMDdhOWNhYTZhMjIwODc5MDMxN2QyMmE1YTFmN2QyY2M1M2VmZDkzMjMyOThiYmNhZA==',
'delPer': '0',
'PSINO': '2',
'BA_HECTOR': '8h24a024042g05alup1h3g0aq0q',
}
headers = {
'Connection': 'keep-alive',
'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"',
'Accept': 'text/plain, */*; q=0.01',
'X-Requested-With': 'XMLHttpRequest',
'sec-ch-ua-mobile': '?0',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.99 Safari/537.36',
'sec-ch-ua-platform': '"macOS"',
'Sec-Fetch-Site': 'same-origin',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Dest': 'empty',
'Referer': 'https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=result&fr=&sf=1&fmq=1647837998851_R&pv=&ic=&nc=1&z=&hd=&latest=©right=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&dyTabStr=MCwzLDIsNiwxLDUsNCw4LDcsOQ%3D%3D&ie=utf-8&sid=&word=%E7%8B%97%E7%8B%97',
'Accept-Language': 'zh-CN,zh;q=0.9',
}
图片爬虫
def craw_single_class(keyword, DOWNLOAD_NUM = 200):
if os.path.exists('dataset/'+keyword):
print('文件夹 dataset/{} 已存在,之后直接将爬取到的图片保存至该文件夹中'.format(keyword))
else:
os.makedirs('dataset/{}'.format(keyword))
print('新建文件夹:dataset/{}'.format(keyword))
count = 1
with tqdm(total=DOWNLOAD_NUM, position=0, leave=True) as pbar:
# 爬取第几张
num = 0
# 是否继续爬取
FLAG = True
while FLAG:
page = 30 * count
params = (
('tn', 'resultjson_com'),
('logid', '12508239107856075440'),
('ipn', 'rj'),
('ct', '201326592'),
('is', ''),
('fp', 'result'),
('fr', ''),
('word', f'{keyword}'),
('queryWord', f'{keyword}'),
('cl', '2'),
('lm', '-1'),
('ie', 'utf-8'),
('oe', 'utf-8'),
('adpicid', ''),
('st', '-1'),
('z', ''),
('ic', ''),
('hd', ''),
('latest', ''),
('copyright', ''),
('s', ''),
('se', ''),
('tab', ''),
('width', ''),
('height', ''),
('face', '0'),
('istype', '2'),
('qc', ''),
('nc', '1'),
('expermode', ''),
('nojc', ''),
('isAsync', ''),
('pn', f'{page}'),
('rn', '30'),
('gsm', '1e'),
('1647838001666', ''),
)
response = requests.get('https://image.baidu.com/search/acjson', headers=headers, params=params, cookies=cookies)
if response.status_code == 200:
try:
json_data = response.json().get("data")
if json_data:
for x in json_data:
type = x.get("type")
if type not in ["gif"]:
img = x.get("thumbURL")
fromPageTitleEnc = x.get("fromPageTitleEnc")
try:
resp = requests.get(url=img, verify=False)
time.sleep(1)
# print(f"链接 {img}")
# 保存文件名
# file_save_path = f'dataset/{keyword}/{num}-{fromPageTitleEnc}.{type}'
file_save_path = f'dataset/{keyword}/{num}.{type}'
with open(file_save_path, 'wb') as f:
f.write(resp.content)
f.flush()
# print('第 {} 张图像 {} 爬取完成'.format(num, fromPageTitleEnc))
num += 1
pbar.update(1) # 进度条更新
# 爬取数量达到要求
if num > DOWNLOAD_NUM:
FLAG = False
print('{} 张图像爬取完毕'.format(num))
break
except Exception:
pass
except:
pass
else:
break
count += 1
format用法:通过位置来填充字符串。会把参数按位置顺序来填充到字符串中,第一个参数是0,然后1 ……
也可以不输入数字,则会按照顺序自动分配,而且一个参数可以多次插入。
python中format用法
craw_single_class('猫猫',DOWNLOAD_NUM=200)
在这里遇到了两个错误:
- TypeError:'module' object is not callable
原因是:模式名和函数名相同了,所以需要进行区别。修改import语句,导入模块内的函数或属性,而不是导入模块。
改成from tqdm import tqdm
Solved TypeError: ‘Module’ Object Is Not Callable in Python?- ProxyError: Cannot connect to proxy
原因:以前的vpn设置没有把注册表的代理删掉,更直接的解决办法是找到注册表里面用户的代理设置,把ProxyEnable的值改为0。
python 错误:‘Cannot connect to proxy.‘由于目标计算机积极拒绝,无法连接
#爬取多个类
class_list = ['狗狗','机器猫','猫猫']
for i in class_list:
craw_single_class(i,DOWNLOAD_NUM=200)
删除无关图片
#删除gif格式的图像文件
import imghdr
def del_type(path):
if imghdr.what(path)=='gif':
os.remove(path)
print('remove--{}'.format(path))
for each_class in class_list:
image_path=r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\dataset\{}'.format(each_class)
img_list=os.listdir(image_path)
for img in img_list:
full_path=os.path.join(image_path,img)
del_type(full_path)
删除非三通道的图像
#删除非三通道的图像
for fruit in tqdm(os.listdir(dataset_path)):
for file in os.listdir(os.path.join(dataset_path, fruit)):
file_path = os.path.join(dataset_path, fruit, file)
img = np.array(Image.open(file_path))
try:
channel = img.shape[2]
if channel != 3:
print(file_path, '非三通道,删除')
os.remove(file_path)
except:
print(file_path, '非三通道,删除')
os.remove(file_path)
#封装
def del_channel(file_path):
img = np.array(Image.open(file_path))
try:
channel = img.shape[2]
if channel != 3:
print(file_path, '非三通道,删除')
os.remove(file_path)
else:
print(file_path,"此为"+str(channel)+"通道图片")
except:
print(file_path, '非三通道,删除')
os.remove(file_path)
image_path=r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\dataset\dev'
img_list=os.listdir(image_path)
for img in img_list:
full_path=os.path.join(image_path,img)
del_channel(full_path)
图片的形状
#图片的形状
def get_imgsize(dataset_path):
os.chdir(dataset_path)#cd 到dataset
df = pd.DataFrame()
for each in tqdm(os.listdir()):#遍历每个类别
os.chdir(each)
for file in os.listdir():#遍历每张图片
try:
img = cv2.imread(file)#从文件中读出图片
df = df.append({'类别':each,'文件名':file,'图像宽':img.shape[1],'图像高':img.shape[0]},ignore_index=True)
except:
print(os.path.join(each,file),"读取错误")
os.chdir('../')
os.chdir('../')
return df
dataset_path = r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\dataset'
df=get_imgsize(dataset_path)
df
#可视化图像尺寸分布
x = df['图像宽']
y = df['图像高']
xy = np.vstack([x,y])
z = gaussian_kde(xy)(xy)
# Sort the points by density, so that the densest points are plotted last
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
plt.figure(figsize=(10,10))
# plt.figure(figsize=(12,12))
plt.scatter(x, y, c=z, s=5, cmap='Spectral_r')
# plt.colorbar()
# plt.xticks([])
# plt.yticks([])
plt.tick_params(labelsize=15)
xy_max = max(max(df['图像宽']), max(df['图像高']))
plt.xlim(xmin=0, xmax=xy_max)
plt.ylim(ymin=0, ymax=xy_max)
plt.ylabel('height', fontsize=25)
plt.xlabel('width', fontsize=25)
plt.savefig('图像尺寸分布.pdf', dpi=120, bbox_inches='tight')
plt.show()
划分train、val
#创建训练文件夹pre_data,之后建立train、test
pre_data_path = r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\pre_data'
#创建train文件夹
os.mkdir(os.path.join(pre_data_path,'train'))
#创建test文件夹
os.mkdir(os.path.join(pre_data_path,'val'))
#创建每个类别的子文件夹
for each in os.listdir(dataset_path):
os.mkdir(os.path.join(pre_data_path,'train',each))
os.mkdir(os.path.join(pre_data_path,'val',each))
#划分训练集、测试集,移动文件
test_frac = 0.2 # 测试集比例
random.seed(123) # 随机数种子,便于复现
print('{:^18} {:^18} {:^18}'.format('类别', '训练集数据个数', '测试集数据个数'))
df = pd.DataFrame()
for fruit in os.listdir(dataset_path): # 遍历每个类别
# 读取该类别的所有图像文件名
old_dir = os.path.join(dataset_path, fruit)
images_filename = os.listdir(old_dir)
random.shuffle(images_filename) # 随机打乱
# 划分训练集和测试集
testset_numer = int(len(images_filename) * test_frac) # 测试集图像个数
testset_images = images_filename[:testset_numer] # 获取拟移动至 test 目录的测试集图像文件名
trainset_images = images_filename[testset_numer:] # 获取拟移动至 train 目录的训练集图像文件名
# 移动图像至 test 目录
for image in testset_images:
old_img_path = os.path.join(dataset_path, fruit, image) # 获取原始文件路径
new_test_path = os.path.join(pre_data_path, 'val', fruit, image) # 获取 test 目录的新文件路径
shutil.copy(old_img_path, new_test_path) # 移动文件
# 移动图像至 train 目录
for image in trainset_images:
old_img_path = os.path.join(dataset_path, fruit, image) # 获取原始文件路径
new_train_path = os.path.join(pre_data_path, 'train', fruit, image) # 获取 train 目录的新文件路径
shutil.copy(old_img_path, new_train_path) # copy文件
#
# # 删除旧文件夹
# assert len(os.listdir(old_dir)) == 0 # 确保旧文件夹中的所有图像都被移动走
# shutil.rmtree(old_dir) # 删除文件夹
# 工整地输出每一类别的数据个数
print('{:^18} {:^18} {:^18}'.format(fruit, len(trainset_images), len(testset_images)))
# 保存到表格中
df = df.append({'class':fruit, 'trainset':len(trainset_images), 'testset':len(testset_images)}, ignore_index=True)
# # 重命名数据集文件夹
# shutil.move(dataset_path, dataset_name+'_split')
#
# 数据集各类别数量统计表格,导出为 csv 文件
df['total'] = df['trainset'] + df['testset']
df.to_csv('数据量统计.csv', index=False)
#可视化图片
#指定需要可视化的文件夹
folder_path = r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\pre_data\train'
#数目
N = 25
# n行,n列
n = math.floor(np.sqrt(N))
images = []
#更改成英文名os.rename(原文件名,新文件名) : 对文件或目录改名
os.rename(os.path.join(folder_path,'机器猫'),os.path.join(folder_path,'doraemon'))
os.rename(os.path.join(folder_path,'狗狗'),os.path.join(folder_path,'dog'))
os.rename(os.path.join(folder_path,'猫猫'),os.path.join(folder_path,'cats'))
更改成英文主要是下面遇到问题了
child_path = r'D:\01-learning\01-000-inbox\01-000-01-datawhale\Jan-pytorch-classify-image\pre_data\train\cats'
for each_img in os.listdir(child_path)[:N]:
image_path = os.path.join(child_path,each_img)
img_bgr = cv2.imread(image_path)
img_rgb = cv2.cvtColor(img_bgr,cv2.COLOR_BGR2RGB)
images.append(img_rgb)
遇到了问题是:
error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor'
原因:是因为文件名中有中文,将处理后文件进行保存后发现英文文件名的图像正常,而中文错误。
解决:
Opencv 解决问题 !_src.empty() in function 'cv::cvtColor'
所以上一步改成英文名之后没有问题了。
画图
#画图
fig = plt.figure(figsize=(10,10),dpi=300)
grid = ImageGrid(fig,111,#子图111
nrows_ncols=(n,n),
axes_pad = 0.02,#网格间距
share_all=True
)
for ax,im in zip(grid,images):
ax.imshow(im)
ax.axis('off')
plt.tight_layout()
plt.show()
plt.savefig('cat25.png')
参考文献
【1】python中format用法
【2】Solved TypeError: ‘Module’ Object Is Not Callable in Python?
【3】python 错误:‘Cannot connect to proxy.‘由于目标计算机积极拒绝,无法连接
【4】Opencv 解决问题 !_src.empty() in function 'cv::cvtColor'
【5】cv2库(OpenCV,opencv-python)