2014-03-20 04:04
题目:给你不限量的1分钱、5分钱、10分钱、25分钱硬币,凑成n分钱总共有多少种方法?
解法:理论上来说应该是有排列组合的公式解的,但推导起来太麻烦而且换个数据就又得重推了,所以我还是用动态规划解决。
代码:
1 // 9.8 Given unlimited quarters(25 cents), dimes(10 cents), nickels(5 cents) and pennies(1 cent), how many ways are there to represent n cents. 2 #include <cstdio> 3 #include <vector> 4 using namespace std; 5 6 // f(n, 1) = 1; 7 // f(n, 1, 5) = sigma(i in [0, n / 5]){f(n - i * 5, 1)}; 8 // f(n, 1, 5, 10) = sigma(i in [0, n / 10]){f(n - i * 10, 1, 5)} 9 // f(n, 1, 5, 10, 25) = sigma(i in [0, n / 25]){f(n - i * 25, 1, 5, 10)} 10 int main() 11 { 12 int n; 13 vector<vector<long long int> > v; 14 const int MAXN = 1000000; 15 const int c[4] = {1, 5, 10, 25}; 16 17 int i, j; 18 v.resize(2); 19 for (i = 0; i < 2; ++i) { 20 v[i].resize(MAXN); 21 } 22 int flag = 1; 23 int nflag = !flag; 24 for (i = 0; i < MAXN; ++i) { 25 v[0][i] = 1; 26 } 27 28 for (i = 1; i < 4; ++i) { 29 for (j = 0; j < c[i]; ++j) { 30 v[flag][j] = v[nflag][j]; 31 } 32 for (j = c[i]; j < MAXN; ++j) { 33 v[flag][j] = v[nflag][j] + v[flag][j - c[i]]; 34 } 35 flag = !flag; 36 nflag = !nflag; 37 } 38 flag = !flag; 39 nflag = !nflag; 40 41 while (scanf("%d", &n) == 1 && n >= 0 && n < MAXN) { 42 printf("%lld\n", v[flag][n]); 43 } 44 for (i = 0; i < 2; ++i) { 45 v[i].clear(); 46 } 47 v.clear(); 48 49 return 0; 50 }